
Phil Physics: Week 5

Review

Let’s return to the map of “different places where quantum weirdness might
be located.” We’ve already talked about superposition (a relation on quan-
tum states), and a little bit about entangled states. Last week with Alex you
talked about what many people think is the absolute most central problem
of QM: the measurement problem. Let’s begin with a short discussion of how
you assess the relation between the measurement problem and the previous
two issues.

Cards on the table: I myself am somewhat puzzled that people put so
much weight on the measurement problem. Here’s a question: can you imag-
ine a quantum world in which there were no observers whatsoever — where,
by definition, there can be no measurement problem? How would you un-
derstand superpositions in this world? How would you understand entangled
states in this world? Do you think that those questions are easy to answer,
but that there’s something mysterious about what happens during measure-
ments? My feeling is that once you’ve done all the work to understand how
quantum theory could be true in a world without observers, then it won’t be
an additional huge challenge to understand how quantum theory could be
true in a world with observers. In other words, I would suggest that there is a
problem that comes up before the measurement problem: how to understand
superpositions and entangled states. (For further reflection: what would it
mean to understand superpositions and entangled states?)

Hidden variables

The subject this week (and, to some degree, next week) are the famous
“no hidden variables theorems.” Some people think that these theorems are
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deeply significant, i.e. they tell us something important about the quantum
world. Other people think that these theorems are massively overrated, and
indeed misleading. To be honest, I’ve never seen a good argument for either
one of those views. I think it’s a matter of taste — and I happen to be among
those who find these theorems to be illuminating.

Historical overview

1932 First NHV theorem proven by John von Neumann (Von Neumann,
1932)

1935 Von Neumann’s proof criticized by philosopher-physicist Grete Her-
mann (1935). Unfortunately, Hermann was largely ignored.

1952 David Bohm constructs a hidden variable model, seemingly in con-
tradiction with von Neumann’s result. (Some would say that Bohm
rediscovered Louis De Broglie’s theory, and there are strong similari-
ties between Bohm’s views and the views of Schrödinger.)

1957 Mackey conjectures and Gleason proves: when dimH ≥ 3, every prob-
ability measure on subspaces (projections) is represented by a quantum
state. (Gleason, 1957)

1964–66 John Bell criticizes von Neumann’s proof; introduces idea of con-
textual hidden variables; proves no local hidden variables theorem (i.e.
derivation of Bell inequality); uses Gleason’s theorem to derive a result
equivalent to the Kochen-Specker theorem

1967 Kochen and Specker prove a NHV theorem without linearity assump-
tion (Kochen and Specker, 1967)

1972–2018 Bell tests, see https://en.wikipedia.org/wiki/Bell_test_

experiments

1988 “The von Neumann proof, if you actually come to grips with it, falls
apart in your hands! There is nothing to it. It’s not just flawed, it’s
silly! . . .When you translate [his assumptions] into terms of physical
dispositions, they’re nonsense. You may quote me on that: The proof
of von Neumann is not merely false but foolish!” (Bell, 1988)
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1993 “Many generations of graduate students who might have been tempted
to try to construct hidden-variables theories were beaten into submis-
sion by the claim that von Neumann, 1932, had proved that it could
not be done. . . . A third of a century passed before John Bell, 1966,
rediscovered the fact that von Neumann’s nohidden-variables proof was
based on an assumption that can only be described as silly—so silly,
in fact, that one is led to wonder whether the proof was ever studied
by either the students or those who appealed to it to rescue them from
speculative adventures.” (Mermin, 1993)

2006 Conway-Kochen free will theorem (Conway and Kochen, 2006)

Framework assumptions

To clarify one thing: you cannot prove any mathematical theorem without
adopting a mathematical framework. You’ve got to make some assumptions
about what mathematical things will be used to represent things like: propo-
sitions, properties, truth-values, states, probabilities, etc.

The NHV theorems we will look at fall under one of the following two
frameworks.

1. Logical: show that we cannot simultaneously assign truth values to
all propositions that can (at some time or other) be asserted about a
quantum system.

2. Algebraic: show that we cannot simultaneously assign dispersion-free
expectation values to all quantities that (at some time or other) a
system can have.

For many of you in this class — e.g. philosophy concentrators — the
logical result will be easier to understand. However, the logical framework is
farther away from the actual formalism that physicist use. So here is how I
will proceed. I will first explain the result in the algebraic framework. During
this part, you philosophy types shouldn’t worry if you have trouble following
step by step. Then I’ll explain how the algebraic result translates into a
logical result, and that’s when everybody needs to pay close attention again.
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Quantities and states

What we know so far:

1. Quantum states are represented by vectors in some space H. These
states can be superposed.

2. A quantity is represented by an assignment of real numbers to or-
thonormal basis of vectors. For example, spin-z is represented by an
assignment of +1 to one vector, and −1 to an orthogonal vector. (Note:
people often call these observables instead of quantities.) The num-
bers here are the possible values that the quantity can take.

3. With the above two conventions, the Born rule tells us how to compute,
for any given quantum state, and for any given quantity, the probability
that quantity will have a certain value in that quantum state.

We’re now going to explain a second way of thinking about quantities,
which is captured by the following correspondence:

quantity
(aka observable)

assignment of real numbers to an
orthonormal set of vectors

self-adjoint linear
operator

property
(aka proposition)

subspace of Hilbert space projection operator

state assignment of expectation values
to quantities

density operator

Under this correspondence, the orthonormal basis of a quantity are the
eigenvectors of the operator, and the assigned real numbers are the eigen-
values of the operator.

So now for some precise definitions.

Definition. Let H and K be vector spaces. A linear operator A : H → K
is a function such that A(x+y) = Ax+Ay and A(λx) = λAx, for all x, y ∈ H
and for all λ ∈ C.

Here we’re using complex numbers C for our scalars.

Exercise. Given linear operators A : H → K and B : H → K, define A+B
to be the function that assigns Ax + Bx to x. Show that A + B is a linear
operator. Similarly, for λ ∈ C, define (λA)x = λ(Ax), and show that λA is a
linear operator. It’s straightforward to verify that L(H,K) is itself a vector
space.
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For the next result, we need to make use of the following fact: if x and y
are unit vectors, then ⟨y, x⟩ = 1 iff x = y. For the “only if” part, note first
that x = ⟨y, x⟩y + z, where z is a vector such that ⟨y, z⟩ = 0, and |⟨y, x⟩|2 +
∥z∥2 = 1. (Here z is the projection of x onto the subspace orthogonal to y.)
Hence, if ⟨y, x⟩ = 1, then z = 0 and x = y.

1 Theorem. Let H be a finite-dimensional inner product space. For each
y ∈ H, then the equation φy(x) = ⟨y, x⟩ defines a linear functional φy on
H. Moreover, each linear functional on H arises, in this way, from a unique
element y ∈ H.

Proof. The first claim follows immediately from the fact that the inner prod-
uct is linear in the second argument. For the second claim, let φ : H → C
be a linear functional. If φ(x) = 0 for all x ∈ H, then the result follows with
y = 0. So suppose that φ(x) ̸= 0 for some x ∈ H. Let K be the kernel
of ϕ, i.e. the subspace of vectors x ∈ H such that ϕ(x) = 0. Since ϕ isn’t
constantly zero, K ̸= H, and K⊥ is nonempty. Let u be a unit vector in K⊥,
and note that

φ (φ(u)x− φ(x)u) = 0,

for each x ∈ H. Hence, ϕ(u)x− ϕ(x)u ∈ K, and since u ∈ K⊥, we have

0 = ⟨u, φ(u)x− φ(x)u⟩ = φ(u)⟨u, x⟩ − φ(x).

If we then set y = φ(u), we have

φy(x) = ⟨φ(u)u, x⟩ = φ(x), (x ∈ H).

Therefore, φ has the form φy for some y ∈ H. To show the uniqueness of
y, suppose that φy = φz. Then ⟨y, x⟩ = ⟨x, x⟩ = 1, and from the discussion
preceding this theorem, x = y.

2 Proposition. Given a linear operator A : H → K, there is a unique linear
operator A∗ : K → H such that

⟨y, Ax⟩ = ⟨A∗y, x⟩,

for all x ∈ H and y ∈ K.

The operator A∗ is called the adjoint of A.
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Proof. Define φ : H → C by φ(x) = ⟨y, Ax⟩. By the previous theorem,
φ = φA∗y for some vector A∗y ∈ H; that is, ⟨y, Ax⟩ = ⟨A∗y, x⟩, for all x ∈ H.
Moreover, given y, z ∈ K, we have

⟨A∗(y + z), x⟩ = ⟨y + z, Ax⟩ = ⟨y, Ax⟩+ ⟨z, Ax⟩ = ⟨A∗y + A∗z, x⟩,

for all x ∈ H. By the previous theorem again, A∗(y + z) = A∗y + A∗z.
A similar argument shows that A∗(λy) = λA∗y, and hence A∗ is a linear
operator.

To see that A∗ is unique, suppose that ⟨A∗y, x⟩ = ⟨By, x⟩, for all x, y ∈ H.
Then ⟨A∗y − By, x⟩ = 0, for all x ∈ H, from which A∗y = By, for all
y ∈ H.

3 Proposition. For any A ∈ B(H), we have A∗∗ = A.

Proof. Since ⟨x,Ay⟩ = ⟨A∗x, y⟩, it follows that ⟨Ay, x⟩ = ⟨y, A∗x⟩.
Exercise. Show that (A+B)∗ = A∗ +B∗, and (AB)∗ = B∗A∗.

Definition. We say that A : H → H is self-adjoint if A = A∗.

This last definition isn’t so illuminating; but the important thing is that
it’s tantamount to saying that A has an orthonormal basis of eigenvectors,
and that its eigenvalues are real numbers.

Definition. Let x be a nonzero vector inH. We say that x is an eigenvector
for A just in case Ax = λx for some λ ∈ C.

In other words, A doesn’t move x outside of its ray.

Definition. We say that λ ∈ C is an eigenvalue for A just in case Ax = λx
for some nonzero vector x ∈ H.

Definition. We say that an operator E on H is a projection operator
just in case it is self-adjoint and E2 = E. Equivalently, E is self-adjoint and
has eigenvalues in the set {0, 1}. In particular, the zero operator 0 and the
identity operator I are projection operators.

Seen as a “quantity”, a projection operator E is kind of boring: it only
has two possible values, 0 and 1. But that allows it to play the special role
as representing a property, i.e. something that the system either has or
lacks. That is, if the value of E is 1, then the system is thought to have the
property E, and if the value of E is 0, then the system is thought to lack the
property E. (In some literature, the projection operators are called yes-no
questions.)
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Exercise. Let y ∈ H be a unit length vector, and define an operator E :
H → H by

Ex = ⟨y, x⟩y, (x ∈ H).

Show that E is a projection operator, and that z ∈ H is an eigenvector for
E iff z = cy for some c ∈ C.

Definition. We say that projection operators E and F are orthogonal
when EF = 0.

Exercise. Show that if E and F are orthogonal projection operators, then
E + F is also a projection operator.

Definition. Let K be a subset of the vector space H. We say that K is a
subspace just in case for all x, y ∈ K and all λ ∈ C, both x + y ∈ K and
λx ∈ K. We write dimK for the dimension of K, i.e. the maximal number
of mutually orthogonal vectors in K.

Exercise. Suppose that K and L are subspaces of H. Show that K ∩ L is
also a subspace.

Exercise. Let E be a projection operator on H, and let K be the set of
vectors x ∈ H such that Ex = x. Show that K is a subspace.

Exercise. Suppose that E and F are projection operators on H and that
EF = FE. Show that EF is a projection operator. Let [E] be the subspace
onto which E projects. Show that [EF ] = [E] ∩ [F ].

Spectral Theorem. If A is a self-adjoint linear operator, then there are
orthogonal projection operators E1, . . . , En and real numbers λ1, . . . , λn such
that

A = λ1E1 + · · ·+ λnEn.

For understanding the spectral representation of a self-adjoint operator,
it can be helpful to think of the sum operation on orthogonal projection
operators as a logical disjunction. In fact, for any projections E and F , we
can define E ∨ F to be the projection onto the smallest subspace of H that
contains both [E] and [F ].

Exercise. Show that when E and F are orthogonal, then E ∨ F = E + F .
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But beware not to carry over all of your intuitions from classical logic. For
example, if E and F are projections onto mutually orthogonal unit vectors
x and y, then E ∨ F is the projection onto the subspace spanned by {x, y}.
In that case, the state 1√

2
(x + y) assigns 1 to E ∨ F even though it doesn’t

assign 1 to either E or to F . In other words, quantum probabilities have
the strange feature that a disjunction can be certainly true even if neither
disjunct is certainly true.

We now let B(H) denote the set of all linear operators on H. (The letter
“B” here comes from the fact that when H is infinite dimensional, we restrict
to bounded linear operators.) The set B(H) has the following operations:

addition A,B 7→ A+B

scalar multiplication λ,A 7→ λA

multiplication A,B 7→ AB

adjunction A 7→ A∗

There are also two special elements 0 ∈ B(H) and I ∈ B(H). The former
is defined by 0x = 0 for all x ∈ H, and the latter by Ix = x for all x ∈ H.
With these operations, B(H) is not simply a vector space over C, it is also
an “algebra with adjunction”.

Definition. For operators A,B ∈ B(H), we define [A,B] = AB − BA. We
say that A and B are compatible just in case [A,B] = 0.

We will now define the notion of an abstract “state” on B(H). In short,
a state assigns a real number to a self-adjoint operator, which can be inter-
preted as the expectation value of the corresponding quantity in that state.

Definition. A linear functional on B(H) is a function ρ : B(H) → C such
that ρ(A+B) = ρ(A) + ρ(B) and ρ(λA) = λρ(A).

Definition. A state in the abstract sense on B(H) is a function ω : B(H) →
C such that:

1. ω is linear, and

2. min[sp(A)] ≤ ω(A) ≤ max[sp(A)], for every self-adjoint operator A ∈
B(H).
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In particular, if ω is a state, then ω(I) = 1, since 1 is the only eigenvalue
of I. Similarly, if E is a projection operator, then ω(E) ∈ [0, 1]. It’s easy to
see why a state ω should have this latter feature, i.e. that ω(A) lies between
the smallest and largest eigenvalues of A. After all, ω is supposed to assign
an expectation value to A, which should be a weighted average of the possible
values that A could take.

But why assume that states are linear functionals? It is true that, in
classical physics, expectation values are linear functions on random variables.
So why should it be any different in quantum physics? However, it’s the
linearity assumption that John Bell considers to be “silly” and “meaningless.”

Example. Let x ∈ H be a unit length vector, and define a function
ωx : B(H) → C by ωx(A) = ⟨x,Ax⟩. Obviously ωx is a linear functional.
Furthermore, if A = λ1E1+· · ·+λnEn is a self-adjoint operator in its spectral
representation, then

ωx(A) =
∑
i

λi⟨x,Eix⟩,

which is a weighted average of the eigenvalues of A. Therefore, ωx is a state.

Definition. If σ and ρ are linear functionals, and a, b ∈ C, then we define
aσ + bρ to be the function defined by

(aσ + bρ)(A) = aσ(A) + bρ(A).

It’s easy to see that aσ + bρ is a linear functional.

Exercise. Suppose that σ and ρ are states on B(H), and that λ ∈ (0, 1).
Show that λσ + (1− λ)ρ is also a state on B(H). We call this latter state a
mixture of σ and ρ. If a state is not a mixture of other states, then we say
that it is pure.

The previous exercise shows that if we have n unit vectors x1, . . . , xn ∈ H,
then we can form mixed states such as

λ1ωx1 + · · ·+ λnωxn ,

where λi ∈ [0, 1] such that λ1 + · · ·+ λn = 1.
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Example. Since we’re working here in the finite-dimensional case, i.e. where
the dimension of H is a finite number n, there is always a special state, the
so-called maximally mixed state. The idea behind this state is simple:
take any quantity, say A, that has possible values a1, . . . , an. Suppose that we
don’t know anything whatsoever about the system. Then what value should
we “expect” for A? The maximally mixed state says: take the average of
a1, . . . , an, i.e. set

τ(A) =
a1 + · · ·+ an

n
.

In particular, for any projection operator E, τ(E) = d(E)
n

, where d(E) is the
dimension of the subspace onto which E projects. This maximally mixed
state has another name: it is the trace, or to be more precise, the trace
divided by the dimension of the vector space H. We use Tr() for the trace,
so that Tr(A) = nτ(A).

For those of you who have done linear algebra, you’ll remember that the
trace of a matrix is the sum of its diagonal elements. Here is a more formal
(coordinate-free) definition.

Definition. Suppose that dimH = n, and let {x1, . . . , xn} be an orthonor-
mal basis for H. The trace on B(H) is defined by

Tr(A) =
n∑

i=1

⟨xi, Axi⟩,

for all A ∈ B(H).

It is easy to show that trace is a linear functional. Furthermore,

Tr(A∗) =
∑
i

⟨xi, A
∗xi⟩ =

∑
i

⟨xi, Axi⟩ = Tr(A),

for any operator A ∈ B(H). Finally, if Tr(A∗A) = 0, then

0 = Tr(A∗A) =
∑
i

∥Axi∥2,

which means that Axi = 0 for all xi in the basis {x1, . . . , xn}, hence A = 0.
(In this case, we say that the trace is faithful.)
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We’re going to show now that the definition of the trace is in fact inde-
pendent of the chosen orthonormal basis {x1, . . . , xn}. But first we need to
gather some more facts about Hilbert spaces. Recall that {x1, . . . , xn} is said
to be an orthonormal basis for H just in case: (1) it’s a basis, i.e. every
vector y ∈ H can be written as y = c1x1 + · · · + cnxn for a unique sequence
ci of complex numbers, and (2) ⟨xi, xj⟩ = 0 when i ̸= j, and (3) ⟨xi, xi⟩ = 1.
It immediately follows then that for any vector y ∈ H, if ⟨y, xi⟩ = 0 for
i = 1, . . . , n, then y = 0.

Definition. For any subset K of H, we write K⊥ for the set of vectors y ∈ H
such that ⟨y, x⟩ = 0 for all x ∈ K.

Exercise. Show that K⊥ is a subspace of H.

4 Proposition. Suppose that {x1, . . . , xn} is an orthonormal basis for H.
Then for any vector y ∈ H,

y =
n∑

i=1

⟨xi, y⟩xi.

Proof. Since {x1, . . . , xn}⊥ = {0}, it will suffice to show that y−
∑n

i=1⟨xi, y⟩xi

is orthogonal to each xj. For a fixed j, we have〈
xj , y −

n∑
i=1

⟨xi, y⟩xi

〉
= ⟨xj, y⟩ − ⟨xj, y⟩ = 0,

as we needed to show.

5 Proposition. If {x1, . . . , xn} is an orthonormal basis, then for any vectors
y, z ∈ H,

⟨y, z⟩ =
n∑

i=1

⟨y, xi⟩ ⟨xi, z⟩.

Proof. Just write out z =
∑n

i=1⟨xi, z⟩xi, and take its inner product with y.
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Now we can show that the definition of the trace is independent of basis.
Let {x1, . . . , xn} and {y1, . . . , yn} be orthonormal bases for H. Then∑

i

⟨xi, Bxi⟩ =
∑
i

∑
j

⟨xi, yj⟩ ⟨yj, Bxi⟩

=
∑
i

∑
j

⟨xi, yj⟩ ⟨B∗yj, xi⟩

=
∑
j

∑
i

⟨B∗yj, xi⟩ ⟨xi, yj⟩

=
∑
j

⟨B∗yj, yj⟩

=
∑
j

⟨yj, Byj⟩,

as we needed to show.

Example. For an operator represented by a matrix, the trace can be taken
by summing the entries on the diagonal. For example,

Tr

(
1 0
0 −1

)
= 0.

This operation represents summing with the basis consisting of

(
1
0

)
and(

0
1

)
.

Definition. Let U : H → K be a linear operator. We say that U is unitary
just in case ⟨x, y⟩H = ⟨Ux, Uy⟩K for all x, y ∈ H.

Exercise. Show that U : H → K is unitary iff U∗U is the identity on H,
and U∗U is the identity on K.

Exercise. Suppose that {x1, . . . , xn} is an orthonormal basis for H, and
that U : H → K is a unitary operator. Show that {Ux1, . . . , Uxn} is an
orthonormal basis for K.

6 Proposition. For any unitary operator U : H → H, we have Tr(U∗AU) =
Tr(A) for all A ∈ B(H).
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Proof. We have

Tr(U∗AU) =
n∑

i=1

⟨xi, U
∗AUxi⟩

=
n∑

i=1

⟨Uxi, AUxi⟩

= Tr(A),

where the last equation follows from the fact that {Uxi, . . . , Uxn} is an or-
thonormal basis.

7 Proposition. Any operator A ∈ B(H) is a linear combination of unitary
operators.

I’ll omit the proof for now, but for the case of spin operators, it turns out
that {Sx, Sy, Sz, I} is, in fact, a linear basis for B(H). In other words, for
each A ∈ B(H), there is a unique quadruple ai ∈ C such that

A = a0I + a1Sx + a2Sy + a3Sz.

8 Proposition. For any operators A,B ∈ B(H), Tr(AB) = Tr(BA).

Definition. A linear operator D on H is said to be a density operator
just in case D is self-adjoint with eigenvalues λi ∈ [0, 1] such that

∑
i λi = 1.

Example (Trace formula). Suppose that D is a density operator, and define
a function ωD : B(H) → C by setting

ωD(A) = Tr(DA),

for all A ∈ B(H). Then ωD is a state. Indeed, if D = λ1Ex1 + · · · + λnExn ,
then ωD = λ1ωx1 + · · ·+ λnωxn .

9 Proposition. For an abstract state ω on B(H), the following are equiva-
lent:

1. ω(A2) = ω(A)2 for every self-adjoint operator A ∈ B(H).

2. ω(A) is an eigenvalue of A, for every self-adjoint operator A ∈ B(H).

3. ω(E) ∈ {0, 1} for every projection operator E ∈ B(H).
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Proof. Sketch of proof (1 ⇒ 3) Let E be a projection operator. Since EE =
E, it follows that ω(E)2 = ω(E), and hence ω(E) ∈ {0, 1}.

(3 ⇒ 2) Let A =
∑

i λiEi, where
∑

i Ei = I. Since ω is linear, ω(Ei) = 1
for one Ei, and ω(Ej) = 0 for the others. Hence, ω(A) = λi.

Definition. When the conditions above hold, we say that ω is a dispersion-
free state on B(H).

Note: first, this definition of dispersion-free matches classical statistics,
where the variance of a random variable X is E[X2] − E[X]2, where E is
the expectation value function. In other words, a dispersion-free state is a
state where all random variables have zero variance. Second, if we take the
projection operators in B(H) to represent propositions, then a dispersion-free
state is precisely an assignment of truth values to these propositions.

We will shortly prove the von Neumann NHV theorem, which shows that
when dimH ≥ 2, then there are no dispersion-free states on B(H). The
proof has two parts:

1. When dimH ≥ 2, then there are no dispersion-free quantum state, i.e.
states of the form ωD for some density operator D ∈ B(H).

2. Every abstract state on B(H) has the form ωD for some density oper-
ator D on H.

Note: it’s this second part where John Bell thinks that von Neumann
made a mistake. Von Neumann assumed that a “state” or “hidden
variable” would have to be a linear function on B(H). Bell thinks
that this assumption is “silly.” Bell thinks that hidden variables would
only have to be linear on compatible observables (i.e. observables that
can be simultaneously measured, represented by self-adjoint operators
that commute with each other). Let’s call that feature sub-linearity.
Ironically, Gleason’s theorem shows that when the dimension of H is 3
or more, then sub-linearity implies linearity.

Proving the first part of von Neumann’s theorem is easy. Suppose that
dimH ≥ 2, and let x ∈ H be a unit vector. Since dimH ≥ 2, there is
another unit vector y that is skew to x, i.e. it is neither in the ray generated
by x, nor is it orthogonal to x. In particular, 0 < |⟨x, y⟩|2 < 1. Now let E
be the projection onto y. Then

ωx(E) = ⟨x,Ex⟩ = ⟨x, ⟨y, x⟩y⟩ = |⟨x, y⟩|2.
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It follows that ωx(E) ̸∈ {0, 1}, and hence ωx is not dispersion free. Since x
was an arbitrary unit vector in H, it follows that no state of the form ωD is
dispersion-free on B(H). [[There is a little gap here in infering from there
are no dispersion-free vector states to there are no dispersion-free density
operator states. But the fact is that density operator states always have
more dispersion than vector states.]]

Now on to the second part of von Neumann’s theorem, which is a “rep-
resentation” result. In particular, we show that if ω : B(H) → C is a state
in the abstract sense, then there is a density operator D on H such that

ω(A) = Tr(DA),

for all A ∈ B(H).

10 Proposition. Every operator A in B(H) is a sum of two self-adjoint
operators.

Proof. Let Ar =
1
2
(A+ A∗) and let Ai =

i
2
(A∗ − A). Then

2(Ar + iAi) = A+ A∗ + A− A∗ = 2A.

11 Theorem. For any abstract state ω : B(H) → C, there is a density
operator D ∈ B(H) such that ω(A) = Tr(DA) for all A ∈ B(H).

Proof. Assume that ω : B(H) → C is an abstract state. Define a positive-
definite inner product on B(H) by

⟨B,A⟩2 = Tr(B∗A),

for all B,A ∈ B(H). Since ω is linear, Theorem 1 entails that there is an
operator D ∈ B(H) such that

ω(A) = ⟨D,A⟩2 = Tr(D∗A),

for all A ∈ B(H). We need to show then that D is a density operator,
i.e. a self-adjoint operator with eigenvalues 0 ≤ λ1, . . . , λm ≤ 1 such that∑m

i=1 λi = 1.
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Since every operator A ∈ B(H) has the form A = Ar+iAi, with Ar and Ai

self-adjoint, and since states are linear and assign real-values to self-adjoint
operators, it follows that ω(A) = ω(A∗) for all A ∈ B(H). Hence,

Tr(DA) = Tr(DA∗) = Tr(D∗A),

for all A ∈ B(H). Thus, ⟨D,A⟩2 = ⟨D∗, A⟩2 for all A ∈ B(H), from which
it follows that D = D∗.

Now let λ be an eigenvalue of D, and let E be the projection onto the
corresponding eigenvector. Since ω(E) ∈ [0, 1], it follows that

λ = λTr(E) = Tr(DE) ∈ [0, 1].

Furthermore, if E1, . . . , Em are the spectral projections of D, then
∑m

i=1Ei =
I and

m∑
i=1

λi =
m∑
i=1

Tr(DEi) = Tr(DI) = 1.

Therefore, D is a density operator.

This completes the proof of the von Neumann NHV theorem. Every
abstract state on B(H) is represented by some density operator D, using the
trace formula. But no such states are dispersion free. Therefore, there are
no dispersion-free states on B(H).

Logical version of von Neumann theorem

We now prove a second version of the von Neumann NHV theorem, this time
from a logical point of view. (This proof of the theorem will also serve as a
bridge to the Kochen-Specker theorem.)

Definition. For projection operators E,F , we define E ∨ F to be the pro-
jection unto the smallest subspace that contains both [E] and [F ]. We let
E ∧ F be the projection onto [E] ∩ [F ]. We let ¬E = I − E. Finally, we
write E ≤ F just in case EF = E.

Exercise. Show that if E ≤ F and F ≤ G then E ≤ G.
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Let L(H) be the set of all projection operators on the Hilbert space H.
When equipped with the relation ≤, and the operations ∧,∨, the set L(H)
is a lattice. With the operation ¬, it becomes an orthocomplemented
lattice. These lattice operations look like logical operations (conjunction,
disjunction, and negation), and in some ways they behave like them. How-
ever, these operations don’t satisfy all the rules as classical logic, such as
distribution. For example, let E be the projection onto |z+⟩, let F1 be the
projection onto |x+⟩ and let F2 be the projection onto |x−⟩. Then E∧F1 = 0
and E ∧ F2 = 0, but

E ∧ (F1 ∨ F2) = E ∧ I = E

and therefore,

E ∧ (F1 ∨ F2) ̸= (E ∧ F1) ∨ (E ∧ F2).

These features of the lattice L(H) have led some people to say that the weird
thing about QM is that it violates the rules of classical logic.1

Definition. Let p : L(H) → {0, 1} be a function. We say that p is a truth-
valuation on L(H) just in case:

1. p(I) = 1,

2. p(E ∧ F ) is the minimum of p(E) and p(F ), i.e. p(E ∧ F ) = 1 iff
p(E) = 1 and p(F ) = 1, and

3. p(E ∨ F ) is the maximum of p(E) and p(F ).

12 Theorem. If dimH ≥ 2, then there is no truth-valuation on L(H).

Proof. Suppose for reductio ad absurdum that p is a truth-valuation on L(H).
If dimH ≥ 2, then there must be a two-dimensional projection X on H such
that p(X) = 1. Let x1, x2 be orthogonal unit vectors in the range of X, and
let Ei be the projection onto xi. Let F1 be the projection onto x1+x2, and let
F2 be the projection onto x1 − x2. Then E1 ∨E2 = X, and hence p(E1) = 1
or p(E2) = 1. Without loss of generality, assume that p(E1) = 1. Since
E1∧Fi = 0, it follows that p(Fi) = 0 for i = 1, 2. But then 1 = p(F1∨F2) = 0,
a contradiction. Therefore, p cannot exist.

1Birkhoff and von Neumann (1936) were the first to investigate the logical features of
QM. Reichenbach (1944) claims that QM demands a move to a three-valued logic. Putnam
(1969) says that QM demands that we reject classical logic. For a clear discussion of the
issues, see (Gibbins, 1987).
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What does this result show? Some people would say that the result shows
that:

(†) Quantum systems are, of necessity, indeterminate — i.e. in
any situation, there will be some propositions about the system
that are neither true nor false.

For example, suppose that D is a density operator on H, and that we define
p : L(H) → [0, 1] by p(E) = Tr(DE). Then p assigns every proposition some
probability, but it will assign some propositions a value strictly between 0
and 1. So, some people would say that in such a situation (represented by
the density operator D), those propositions don’t have a definite truth-value.

To assess if (†) is a reasonable interpretation of the result, let’s note some
tacit assumptions that could be questioned:

1. Every projection operator in L(H) represents a proposition about the
system. (If this were false, then it might still be the case that every
proposition gets assigned a definite truth value. Suppose, for example,
that there really weren’t any such thing as spin-x, and that sentences
about spin-x could be seen as employing a fiction to speak obliquely
about the real thing, spin-z. This is the kind of strategy that’s em-
ployed by Bohmian mechanics, where particle position is taken to be
the only fundamentally real quantity.)

2. A truth assignment to all propositions would have to satisfy the con-
ditions above.

First of all, of course it’s possible to assign all elements of L(H) either
“true” or “false,” if we don’t respect the supposed logical relations
between elements.

Suppose that E is the projection onto |z+⟩ and that F is the projection
onto |x+⟩. According to a standard way of interpreting the formalism,
we have:

E ≡ spin-z has value +1
F ≡ spin-x has value +1

The convention we adopted was that E ∧ F is the projection onto the
subspace [E] ∩ [F ], which is simply the zero vector. In other words,
E ∧ F = 0, so that our convention presupposes that it’s not possible
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for both Sx and Sz to have value +1 (or any other definite value) at
the same time. Of course, this convention agrees with a certain way
of looking at QM, where incompatible quantities cannot simultane-
ously have values.

3. A truth assignment doesn’t depend on some additional index, e.g. a
context. (Some say that every proposition has a truth-value relative to
a measurement context.)

Was there something “silly” in the assumptions we made about truth-
valuations? Well, without futher discussion, the symbols “∧” and “∨” only
superficially resemble conjunction and disjunction. It isn’t obvious that we
should think of E∨F as “either E or F .” For example, if E is the projection
onto |z+⟩ and F is the projection onto |z−⟩, then E∨F = I. If we interpreted
this “∨” as a classical disjunction, then we would have to see that the system’s
state is either definitely |z+⟩ or |z−⟩.

Kochen-Specker theorem

Let’s take a step back from the standard formalism for QM, which has built
in relations between quantities such as Sx and Sz. Instead, let’s think of
L(H) not as a set of proposition, but as a collection of sets of propositions.
For example, let L(Sz) be the set of all spectral projections of Sz, i.e. L(Sz)
is the four element Boolean lattice with 0, I, and the projections onto |z+⟩
and |z−⟩. Thus, L(Sz) is a maximal Boolean sublattice of L(H), and we
can think of the latter as an aggregate of Boolean lattices.

The question now is whether we can assign states to the individual
Boolean sublattices of L(H).

When dimH = 2, the answer is obviously yes. Since the lattices
L(A), L(B), . . . are only connected by sharing 0 and I, their states can be
chosen independently of each other. To be more precise, for each maximal
Boolean sublattice L of L(H), we can choose a truth-valuation pL on L. Then
we can think of the aggregate {pL : L ⊆ L(H)} as a hidden variable. This
aggregate state assigns 0 or 1 to every proposition, and it respects the logical
operations on compatible projection operators (i.e. those that commute with
each other).

The Kochen-Specker theorem shows that when dimH > 2, these aggre-
gate states do not exist. The key to proving the theorem is to exploit the fact
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that some of these maximal Boolean sublattices share elements in common.
In that case, the state of one sublattice cannot be chosen independently of
the state of another sublattice.

A1 A2 A3 A4 A5 A6 A7 A8 A9


0
0
0
1



0
0
0
1




1
−1
1

−1




1
−1
1

−1



0
0
1
0




1
−1
−1
1




1
1

−1
1




1
1

−1
1




1
1
1

−1



0
0
1
0



0
1
0
0




1
−1
−1
1



1
1
1
1



0
1
0
0



1
1
1
1




1
1
1

−1



−1
1
1
1



−1
1
1
1



1
1
0
0



1
0
1
0



1
1
0
0




1
0

−1
0



1
0
0
1




1
0
0

−1




1
−1
0
0



1
0
1
0



1
0
0
1




1
−1
0
0




1
0

−1
0



0
0
1
1




0
1
0

−1




1
0
0

−1




0
1

−1
0



0
0
1
1




0
1
0

−1




0
1

−1
0



Figure 1: Nine quantities for Kochen-Specker contradiction

Here I’ll sketch the proof for Kochen-Specker in four dimensions. Fol-
lowing Cabello et al. (1996), we construct nine maximal Boolean sublattices
of L(H), each of which has four atoms. (See Figure 1.) With nine dis-
tinct Boolean sublattices, there could be thirty-six distinct atoms. However,
in this collection, each atom occurs exactly two times, so there are only
eighteen distinct atoms. By assumption, only one entry in each column is
assigned 1. Thus, nine entries in total get assigned 1. However, each propo-
sition occurs in the table twice, and it must be assigned the same value at
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both occurrences. It follows that the number of entries assigned 1 is even, a
contradiction.

Contextual hidden variables

Before the 1950s, many people thought that von Neumann’s theorem showed
that it is not possible to supplement QM with hidden variables. The re-
sult was often interpreted as showing that QM cannot be replaced with a
deterministic theory. Then along came Bohm’s theory which is determin-
istic, and which reproduces the predictions of QM. Thus, it might seem that
Bohm’s theory shows that hidden variables are possible after all.

Indeed, it’s easy to get confused here because of what John Bell said
about von Neumann’s theorem — i.e. that it has a silly assumption. One
might be tempted to think that Bohm’s theory bypasses von Neumann’s the-
orem because its hidden variables don’t satisfy von Neumann’s assumption.
That, however, is a misreading of the situation, for the Bell-Kochen-Specker
theorem proves that as long as the state space has dimension three, then von
Neumann’s conclusion follows even without his silly assumption.

To be clear, then, whatever Bohmian mechanics does, it cannot be “re-
alist” in the sense of assigning definite values to all quantities, if we assume
that all self-adjoint operators on Hilbert space represent quantities. So, there
are two things that Bohmian mechanics might be doing: it might be denying
that all operators represent quantities, or it might be thinking of states in a
different way.

We’ll come back a little bit later to the first option, but let me just say
here that Bohmians definitely do embrace this first horn of the dilemma.
Most notably, see Daumer et al. (1996).

What about the second option? Is there a more liberal notion of “hidden
variable” according to which Bohmian mechanics is a hidden variable theory.
One proposal that has been put out there is the idea of contextual hidden
variables. To see what that’s supposed to mean, look back at the table
we used for the Kochen-Specker theorem. Let E be the “proposition” that
occurs in the top left hand corner, and also in the top row of the second
column. The assumption of the KS theorem is that a state ω assigns E a
value (0 or 1), in other words, that “ω(E)” is unambiguous. Let’s write this
out as an official definition:

non-contextuality The value ω(E) is independent of context.
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Here, we’re thinking of a “context” as corresponding to the choice of a quan-
tity to be measured.

Here’s how a contextualist could sidestep the Kochen-Specker theorem:
assign all propositions in the top row 1, and assign all others 0. Of course, to
do so, he ends up speaking ambiguously about the projection operator that
occurs in both row 1, column 5 and in row 2, column 1. He says: if you’re
asking me for the value of E relative to a measurement of A1, then my answer
is 0. But if you’re asking me for the value of E relative to a measurement of
A5, then my answer is 1.

So, the contextualist doesn’t take projections to represent propositions
in the traditional sense. Instead, projections represent the sort of thing that
philosophers have called centering features or propositional functions,
i.e. functions from contexts to propositions (see Egan, 2006).2 A typical
propositional function is something like (S) “I am over six feet tall,” which
is like a function from contexts to propositions. For example, S plus the
context in which Napolean is speaking returns a false proposition, whereas S
plus the context in which Goliath is speaking returns a true proposition.

Now, there is one “cheap” way in which we can turn context-relativism
into realism. Suppose for simplicity that there are two context-relative cor-
rect descriptions: suppose that E1 is true relative to context C1, and that
E2 is true relative to context C2. Then we could say that the true story of
reality is:

(E1 relative to C1) and (E2 relative to C2) and . . .

But to me at least, this seems like a cheap kind of realism. I have a hunch that
this kind of conjunctive description should not really count as yet another
description. (But the conjunctive description does, in some ways, remind me
of the philosopher Kit Fine’s view about relativity theory.)

To be clear: I’ve never heard anybody say that we can get a “god’s eye
view” by taking a logical sum of context-relative descriptions. I have, in
contrast, heard people suggest that QM can be replaced by a realist theory,
so long as its hidden variables are contextual (or nonlocal). But as far as
I can tell, contextualism is completely at odds with the spirit of “realism”,
at least the kind of realism that is expressed in the introduction to Maudlin
(2019).

2Here’s a semi-precise definition: a propositional function is an expression having the
form of a proposition but containing undefined symbols for the substantive elements and
becoming a proposition when appropriate values are assigned to the symbols.
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The interpretation that most obviously complies with Maudlin’s vision
(i.e. the goal of physics is to describe matter in motion) is Bohmian me-
chanics. In the Bohm picture, there is a world out there whose structure is
completely independent of who is looking at it. In contrast, a contextual hid-
den variable assignment is a kind of relativism, i.e. things only have reality
relative to a choice of measured observable.

It seems to me that the contextualist approach would fit much better with
the likes of Niels Bohr than with the likes of David Bohm or Tim Maudlin.
Bohr frequently talks about the need to relativize the description to a choice
of measurement apparatus. That sounds quite a lot like the idea of contextual
hidden variables — i.e. there is a “realist” way of describing within a reference
frame, but no realist description that is frame-independent.

More or less properties

There’s another way of trying to sidestep the NHV theorems: identifying
properties of quantum systems besides those represented by projections. To
begin with an example, consider the sentence:

(P) Ebbe is in an eigenstate of Sz.

(Here “Ebbe” is fictional name I’m using for an electron.) To be in an
eigenstate of Sz is to be either to have the property E1 (the projection onto
|z+⟩) or to have the property E2 (the projection onto |z−⟩). What then is
the correct way to represent the sentence P? On the one hand, P might be
the quantum disjunction E1 ∨ E2; on the other hand, P might be the set-
theoretic union of |z+⟩ and |z−⟩. Let’s first look at the problems with the
first idea, and then we’ll look at how we might develop the second idea.

For further reading

• For more on Grete Hermann, see (Crull and Bacciagaluppi, 2016). For
an argument that von Neumann wasn’t so confused, see (Bub, 2011).
And the debate goes on: (Dieks, 2017; Mermin and Schack, 2018).
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Appendix: Spectral representations

Suppose that H is a finite-dimensional Hilbert space and that A is a self-
adjoint operator on H. We let sp(A) denote the set of eigenvalues of A, i.e.
the spectrum of A.

13 Proposition. If A is a self-adjoint operator on a finite-dimensional
Hilbert space, then the spectrum of A is a finite subset of real numbers.

One can prove this fact in a couple of different ways. On the one hand,
one can use classical linear algebra. On the other hand, one can use the
theory of commutative C∗-algebras. Let C∗(A) be the smallest subalgebra of
B(H) that contains the operator A. In the case we are interested in, where H
is finite-dimensional, C∗(A) will consist of polynomials (over C) in A and I.
If A− λI is not invertible in C∗(A), then it’s contained in a maximal ideal.
A finite-dimensional algebra has only a finite number of distinct maximal
ideals. Since the proof is fairly complicated, we will omit further details.

The following result is known as the continuous spectral representation,
and it holds quite generally. In our particular case, where A is a self-adjoint
operator with finite spectrum, the result is rather trivial.

14 Proposition. The C∗-algebra C∗(A) generated by A is isomorphic to
C(sp(A)), the set of all continuous complex valued functions on sp(A).

In the case we’re interested in, sp(A) is a finite Hausdorff space, and
“continuous” is redundant.

15 Proposition. Let A be a self-adjooint operator on a finte-dimensional
Hilbert space H. Then there is a canonical bijection between the following
sets:

1. Eigenvalues of A

2. Minimal projections in the Boolean lattice L(A)

3. Pure states on the algebra generated by A [The pure states of a com-
mutative algebra are precisely the multiplicative states.]

4. Truth-valuations on the Boolean lattice L(A)

16 Proposition. When sp(A) is finite, the following five algebras are canon-
ically isomorphic to each other.
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1. C∗(A)

2. C(sp(A))

3. C(σA), where σA is the set of pure states of C∗(A).

4. L∞(σA), the algebra of essentially bounded Borel functions from σA to
C. [Since σA is finite, “essentially bounded Borel” is redundant.]

5. ℓ∞(σA), the algebra of bounded sequences of complex numbers indexed
by σA.

Sketch of proof. For (1) ⇔ (3), we use the famous Gelfand duality the-
orem: if A is a commutative C∗-algebra, then A ∼= C(X), where X is the
compact Hausdorff space of states on A. That result is not easy to prove
in the general case. For the case where A is finite-dimensional, the result is
almost trivial.

The equivalence of (2), (4), and (5) is a simple consequence of the fact
that σ(A) is finite.

The fourth and fifth representations make it obvious that C∗(A) has many
projection operators, which correspond to step functions in L∞(sp(A)). In
fact, for each subset ∆ of sp(A), there is a operator E(∆) ∈ C∗(A) that
projects onto the span of the eigenspaces for A with eigenvalues in ∆. [Inter-
pretively, we would say that E(∆) represents the proposition that the value
of A lies in ∆.] In particular, let Ei = E({λi}), and we have

A =
n∑

i=1

λiEi.

Thus, we have the following result.

17 Proposition. Every operator in B(H) is a sum of projection operators.

Definition. We say that A =
∑n

i=1 λiEi is the reduced spectral decom-
position of A just in case the Ei are nonzero and mutually orthogonal pro-
jections, and λi ̸= λj when i ̸= j.

Definition. Given self-adjoint operators A,B on H, we write A ∼ B just
in case A and B have the same reduced spectral decomposition. Speaking
loosely, we say that A and B have the same spectral projections.
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18 Proposition. When H is finite-dimensional, there is a bijective corre-
spondence between:

1. Equivalence classes of self-adjoint operators with the same spectral pro-
jections.

2. Commutative subalgebras of B(H).

3. Boolean sublattices of L(H).

19 Proposition. Let A,B ∈ B(H) be self-adjoint. Then [A,B] = 0 iff A
and B have a common eigenbasis.

20 Theorem (finite Stone-Weierstrass). Let X be a finite set of real numbers.
Then every function f : X → C is a polynomial in x and 1.

Sketch of proof. Suppose thatX = {a, b, c}. Then the characteristic function
of b is

(a− x)(c− x)

(a− b)(c− b)
.

All such characteristic functions are polynomials in x and 1, and every func-
tion f : X → C is a linear combination of characteristic functions.

Example. If X = {−1, 1} then 1
2
(1− x) is the characteristic function of −1

and 1
2
(1 + x) is the characteristic function of 1.

Similarly, if X = {−1, 0, 1} then −1
2
x(1−x) is the characteristic function

of −1, and 1
2
x(1 + x) is the characteristic function of 1, and (1+ x)(1− x) is

the characteristic function of 0.

The Stone-Weierstrass theorem entails that if E is a spectral projection
of A, then there is a polynomial f in x and 1 such that f(A) = E. Here f(A)
is the operator polynomial that results from replacing x with A throughout
f . Furthermore, if E1, . . . , En are the spectral projections of A, then for any
complex numbers c1, . . . , cn, there is a polynomial g such that

g(A) = g(λ1)E1 + · · ·+ g(λn)En = c1E1 + · · ·+ cnEn.
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