
Phil Physics: Week 3

Since we went a bit slow last week, there is some overlap with the end of
last week’s notes and the beginning of this week’s notes.

Introduction

What’s the new thing in quantum mechanics? What’s the philosophical take-
away? As we discussed previously, different people give different answers.
Some say: many worlds. Others day: consciousness cannot be reduced to
matter. Yet others say: nonlocal cause and effect. Yet others say: failure of
classical logic.

In order to make progress on that question, it can help to look at a
similar, but more precise question: what’s special and different about the
mathematical models that quantum mechanics provides? Here are some
options:

superposition non-commutativity entanglement dynamics

For reasons of mathematical exposition, we’ll look at superposition and en-
tanglement before looking at non-commutativity and dynamics.

[Added after lecture: the distinction between synchronic and di-
achronic. The former has to do with how things are at a time, and the
latter has to do with how things change over time.]

Superposition

As you know, vectors can be added. The math is straightforward. Pictorially,
the sum of two vectors is the vector on the diagonal of the parallelogram

1



formed from the original two vectors. In terms of coordinate representations
of vectors, the sum can be taken “pointwise”. That is,(

a1
a2

)
+

(
b1
b2

)
=

(
a1 + a2
b1 + b2

)
We will call the sum of vectors ~a and~b their superposition. The metaphori-
cal language here comes from a different application of vector addition which
we’ll see below.

Another mathematical operation we can perform on vectors is scaling, i.e.
we can multiply a vector by a real number. Pictorially speaking, to multiply
v by 2 is to stretch it to twice its original length (although mind you, we don’t
have a definition yet of the length of the vector v). To multiply v by 3 is to
stretch it to three times its original length. On the other side, to multiply v
by −1 is to reverse its direction, and to mutiply v by 0 is to squish it down
to a vector of zero length.

Now, as to the origin of the word superposition that comes from study-
ing wave phenomena in physics. Imagine that you’re on the beach in Maui,
and two waves are approaching the shore from slightly different directions.
When these waves come together, what happens? They don’t collide like
solid objects and repel each other. Instead, they start to weave themselves
together. At some points, the peaks of the original waves meet to form a
higher wavecrest, and at other points, the troughs of the two waves meet to
form a lower depression. Of course, there can also be points where the two
waves interfere with each other, or cancel each other out.

What is the mathematical representation of waves? If we think of the
sea floor as represented by the plane R2 of real numbers, then a wave can
be represented by a function ψ : R2 → R. Here we stipulate that ψ(q) = 0
represents sea level, i.e. the height of the water when it is at rest. Now, if
two waves ψ1 and ψ2 are coming in to shore, then we define the superposition
wave ψ1 + ψ2 by:

(ψ1 + ψ2)(q) = ψ1(q) + ψ2(q), (q ∈ R2).

(Obviously the example here is imperfect, because it predicts that if ψ1(q) =
ψ2(q) = −0.75, then the superposition wave would be below the ocean’s floor
at point q.) The point is simply that the mathematical representations of
waves — call them wave-functions — form a vector space. In the present
example, the constructed vector space would be much larger than the space
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[Figure to be supplied in lecture]

of directions in R2. Nonetheless, the idea that material things (such as
electrons) display wave-like behavior is the reason why we represent their
states by vectors in a vector space.

Let’s look now at the simplest possible waves. Consider a string stretched
between two points. In fact, let’s idealize to the point where the string has
just two locations: the left side, 0, and the right side, 1. The state of the
string can then be represented by an assignment ψ of real numbers to those
two points. What’s more, such states can be scaled, and any two such states
can be superposed. In other words, the states of the string form a vector
space. If we wanted to be fancy, we could call this vector space l2(Z2), i.e.
it’s the space of functions from Z2 = {0, 1} to the real numbers.

So now here’s the idea behind using a vector space to represent “spin”:
the spin state of an electron is like a string with two locations, subject to
the condition that the values at the two locations sum, after being squared,
to 1. In other words, we require that an electron’s spin wave-function ψ has
the feature that (ψ(0))2 + (ψ(1))2 = 1.

To get the feel for superposition, it might help to look at another kind
of experiment: the famous two-slit interference experiment. Suppose that
there’s a stream of particles directed toward a screen with two slits, and
behind the screen there is another detector screen. Suppose also that there
are little doors on the slits that we can open and close.

In the first experiment, we close the bottom door so that the stream only
goes through the top door, and we see a pattern of detections on the back
screen like this:

That’s not surprising: we expect that the particles emerge from the slit
with fairly random momentum. What’s surprising is what happens when we
open the second door. If the source were producing discrete particles, then
the prediction of classical physics would be two lumps on the back screen,
like this:

In contrast, if the source were producing waves, then classical physics
would predict that the waves coming out of the two slits would interfere with
each other, producing an interference pattern on the back screen.

Quantum mechanics also predicts the interference pattern, and the expla-
nation goes like this: if only the top slit is open, then it prepares particles in
the state |z+〉. If only the bottom slit is open, then it prepares particles in the
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state |z−〉. However, if both slits are open, then the state is 1√
2
(|z+〉+ |z−〉).

This latter state is not a state in which the particle definitely goes through
the top or bottom slit. Instead, it’s more like a wave that goes through both
the top and bottom slits, and then interferes with itself on the other side.

Now back to our Stern-Gerlach magnets. We have already represented
the spin state of an electron by a vector in R2. Mathematically, these vectors
can be superposed, i.e. added together. But what does that mean physically?
Suppose we take the state |z−〉 where the electron has the property of “down”
for Sz, and the state |z+〉 where the electron has the property of “up” for Sz,
and then we add them together. Does the resulting vector define a physical
state, and what is that state like?

Since we have

|z−〉 =

(
1
0

)
|z+〉 =

(
0
1

)
,

it follows that

|x+〉 =
1√
2

(|z−〉+ |z+〉), |x−〉 =
1√
2

(|z+〉 − |z−〉).

Hence, |x+〉 is a superposition of |z−〉 and |z+〉, and |x−〉 is a different
superposition of |z−〉 and |z+〉.

That is curious for several different reasons. First, what in the world does
Sz have to do with Sx? Aren’t these supposed to be independent axes? How
could summing a state with one apple and a state with two apples yield a
state with one orange? Second, how can summing together states where Sz is
sharp give rise to states where Sz is fuzzy? That’s especially puzzling because
electrons can’t remain ambivalent about which way they’ll go through a Sz

magnet: they have to go up or down.
Summary of the philosophical issues: superposition of quantum states

is a whole new kind of thing that we’ve never quite seen before. In one
sense, understanding superposition is the problem of interpreting quantum
mechanics.

Summary of the mathematical issues: quantum states are represented by
vectors, i.e. elements of a vector space. A (real) vector space H is a set
with a special element 0 ∈ H, an operation + that sums vectors, and a scalar
multiplication operation. (Here our scalars are real numbers. Later they will

4



be complex numbers.) These operations satisfy the axioms:

u+ 0 = u
u+ v = v + u

u+ (v + w) = (u+ v) + w
a(u+ v) = au+ av

(ab)v = a(bv)

At this point, we could define the notions of a basis for H, a subspace of
H, and the dimension of H. (Not surprisingly, R2 comes out as having
dimension 2.) But we won’t need those notions for a while yet.

Another example

Suppose that there are two boxes, left and right, and a marble that can be in
either of the two boxes. We use the vector |L〉 to represent the state where
the marble is in the left box, and |R〉 to represent the state where the marble
is in the right box. We use |0〉 to represent the state where the marble is
sitting still, and |1〉 to represent the state where it is moving from one box
to the other.

According to QM, the relation of momentum (velocity) to position is
represented by the following equations:

|0〉 = 1√
2

(|L〉+ |R〉) ,
|1〉 = 1√

2
(|L〉 − |R〉) .

In other words, “sitting still” is a superposition of being in the left and the
right boxes, and “moving” is a different superposition of being in the left
and the right boxes. Notice that the relation here is directly analogous to
the relation between Sz and Sx.

How are we to interpret superposition? What does it mean to say that
the state is a superposition of |L〉 and |R〉? It’s tempting to think that it can
be interpreted probabilistically, i.e. that it means that there’s a fifty percent
chance that the marble is in the left box and a fifty percent chance that
it’s in the right box. But if you say that, then you’re subject to a “Danish
book” argument (a name I made up, in honor of the so-called Copenhagen
interpretation QM):

1. Suppose that the state is |0〉, which is a superposition of |L〉 and |R〉.
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2. There’s a fifty percent chance that the marble is in the left box.

3. If the marble is in the left box, then its state is |L〉.

4. But |L〉 is a superposition of |0〉 and |1〉.

5. Hence, there is a fifty percent chance that the state is |1〉, which con-
tradicts our assumption that the state is |0〉.

Inner product and length

Last week we talked about the Born rule, which is a rule for calculating the
probability of a measurement outcome, conditional on the given quantum
state (i.e. state vector). We can use the notation:

Prob(A = a|w) = |〈va, w〉|2.

The thing on the right-hand side is pure math; the thing on the left-hand
side is our interpretation of that math. The equation “A = a” doesn’t
really make sense as an equation; instead, it is shorthand for the statement
that “the quantity A takes value a.” Here we are assuming that va is the
quanum state in which A has value a. The official terminology is that va is
an eigenstate of A with eigenvalue a. (For the technically inclined: the
quantity A will be represented by a linear operator on the state space. But
you don’t need to know that yet!)

I also mentioned last week that 〈va, w〉 is something like the angle between
the vectors va and w. Its real name is the inner product. To make that
idea more precise: given vectors in coordinate representation, we define their
inner product as follows:〈(

a1
a2

)
,

(
b1
b2

)〉
= a1b1 + a2b2.

Exercise. Show that the inner product, as defined above, is linear in both
arguments. For the first argument, you’ll show that 〈u1 + u2, v〉 = 〈u1, v〉 +
〈u2, v〉, and 〈ru, v〉 = r〈u, v〉.

Exercise. Show that 〈v, v〉 ≥ 0, and that 〈v, v〉 = 0 only if v = 0.
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We can use the properties derived in the previous two exercises as the
official definition of a (positive definite) inner product on a vector space H:
it’s a function from pairs of elements of H to real numbers that is linear in
both arguments, and such that 〈v, v〉 ≥ 0, with 〈v, v〉 = 0 only in the case
that v = 0.

Definition. Given a vector space H with an inner-product 〈−,−〉, we define
‖v‖ = 〈v, v〉1/2. We call ‖v‖ the length or norm of the vector v.

Convention. Quantum states will be represented by unit-length vectors.

For any innner product, we have the following result, called the Cauchy-
Schwartz inequality:

|〈u, v〉| ≤ ‖u‖ ‖v‖.

(The proof isn’t difficult, but we won’t go through it here.) Recalling the
Born rule, this result shows that when u and v are unit vectors, then 0 ≤
|〈u, v〉|2 ≤ 1, which permits its interpretation as the transition probability
from u to v.

Definition. Vectors u and v are said to be orthogonal just in case
〈u, v〉 = 0.

We have stipulated that quantities (aka observables), such as Sx and Sz,
are represented by orthogonal pairs of vectors. In other words: a quantity
A corresponds to an orthogonal decomposition of the vector space H, where
distinct values for A correspond to distinct vectors in this decomposition.
These vectors are the eigenvectors for A. Because of this stipulation, we
have

Prob(A = a|A = a′) = 0,

when a 6= a′. (In fact, quantities such as A will be represented by linear
operators on H. But you don’t need to know that yet.)

Mathematical summary: An inner product on H is a function that
takes pairs of vectors and returns a real number. (Later, when we look at
complex vector spaces, the inner product may return a complex number.)
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Rotation of Stern-Gerlach magnets

We set things up so that the eigenvectors for Sx and Sz are skew to each other
in the plane. That is, if ϕ is an eigenvector for Sx and ψ is an eigenvector
for Sz, then

〈ϕ, ψ〉 = ± 1√
2
,

and hence

Prob(Sz = ±1|Sx = ±1) =
1

2
.

Tensor products

Let’s turn back now to the experiment with the reflectors — where “down”
outcomes of a Sz gate are channelled to a Sx gate, and the outcomes are then
recombined and sent to another Sz gate. The results of this experiment (i.e.
always down) are not explained by the simplified version of the Born+collapse
rule that we gave above — at least not if we think of the Sx gate as a
“measurement.” How then can we think of what happens when the electron
passes through that gate? For this, we’ll need to adopt a more sophisticated
formalism.

An electron is, in one sense, a complicated thing. It has more than one
kind of property. It has its spin properties, but it also has location (and
momentum) properties. So far, we have been idealizing away from those
other properties. We have spoken as if the electron goes up or down, but we
didn’t explicitly encode that into its state vector.

So, an electrons state really has two parts: its spin part, and its position
part. Let’s use the math symbol “⊗” to hold those two parts apart from
each other. So, if an electron is up for σz, and is literally physically up, then
we’ll write its state as z1 ⊗ u. (For now, we can pretend like there are only
three possible spatial locations: up u, down d, and middle m.)

Here then is another hypothesis about what happens when an electron,
starting in position m, passes through a Sz gate: if the electron is in state
|z+〉 then it goes to state u, and if the electron is in state |z−〉 then it goes
to state d. More precisely:

m⊗ |z−〉 7−→ d⊗ |z−〉
m⊗ |z+〉 7−→ u⊗ |z+〉
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This assumes, of course, that the Sz gate doesn’t disturb the spin part of the
state, so long as it’s z-up or z-down. (Do we have any evidence for thinking
that’s true?)

But if the state vector is something like m⊗ψ, then what vector space are
we talking about? We have assumed that the spin state ψ is in the space R2,
but now we also have a second vector space for location, and the electron’s
quantum state is somehow a “product” of those two vectors.

In order for these product states to count as quanum states, we need
to be able to superpose them. That is, we need to define linear combinations
of two product states. We could have a very long discussion indeed about
what justifies the formal rules for product states; that’s an area of research
in itself. For now, I’ll just have to give you the rules of calculation as brute
(unexplained) facts.

(x1 + x2)⊗ y = x1 ⊗ y + x2 ⊗ y
x⊗ (y1 + y2) = x⊗ y1 + x⊗ y2
r(x⊗ y) = rx⊗ y = x⊗ ry

We’ll also need some facts about how the tensor product relates to inner
products. The basic fact is:

〈x1 ⊗ y1, x2 ⊗ y2〉 = 〈x1, x2〉 · 〈y1, y2〉

This means, for example, that if x1 is orthogonal to x2, then x1 ⊗ y1 is
orthogonal to x2 ⊗ y2.

Mathematical summary: given two vector spaces H and K, there is a
vector space H⊗K that is generated by vectors of the form x⊗ y. However,
not every vector ψ in H ⊗ K has the form x ⊗ y. That is, there will be
superpositions of product states, i.e. states of the form

x1 ⊗ y1 + x2 ⊗ y2,

that cannot be further simplified. Such states present a massive challenge
for physical understanding; they are called entangled states. Here’s the
official definition:

Definition. A vector ψ in H⊗K is said to be a product vector if it has the
form ψ = u⊗ v. If ψ is not a product vector, then it’s said to be entangled.
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Linear operators

In QM, linear operators play multiple roles — as representatives of dynamic
transitions, and as representatives of quantities.

Definition. Let H be a vector space. A linear operator A on H is a
function A : H → H such that

A(u+ v) = Au+ Av,
A(ru) = rAu,

for all u, v ∈ H and r ∈ R.

Exercise. Convince yourself that if A and B are linear operators, then the
composite function B ◦ A is also a linear operator. (We usually just write
BA for the composite.)

Exercise. Convince yourself that if A and B are linear operators, then so if
the operator B + A whose action is defined by (B + A)u = Bu+ Au.

As many of you know, one easy way to define linear operators is with
matrices. First of all, suppose that we’ve equipped H with a system of
coordinates so that each ψ ∈ H is represented by a column vector of real
numbers. (For simplicity, we continue to assume that H is isomorphic to R2.)
Then for any four real numbers a11, a12, a21, a22, there is a linear operator
given by(

a11 a12
a21 a22

)(
x1
x2

)
=

(
a11x1 + a12x2
a21x1 + a22x2

)
.

The dynamical changes of state will be represented by a particular kind
of linear operator:

Definition. A linear operator U on H is said to be unitary just in case
〈Uϕ,Uψ〉 = 〈ϕ, ψ〉, for all ϕ, ψ ∈ H.

Recall that we represented the quantity Sz as follows:

• Value +1 is associated with the vector |z+〉 =

(
1
0

)
.

• Value −1 is associated with the vector |z−〉 =

(
0
1

)
.
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It’s obvious that any vector in H ∼= R2 is a linear combination of |z+〉 and
|z−〉. Indeed, we have(

a
b

)
= a|z+〉+ b|z−〉.

In this case, we say that |z+〉 and |z−〉 form a basis for H. Indeed, they
form an orthonormal basis because |z+〉 is orthogonal to |z−〉, and each
vector is of unit length. We can now refine what we said before: quantities
correspond to orthonormal bases of the state space.

Exercise. Show that |x+〉 and |x−〉 form an orthonormal basis for H.

Given an orthonormal basis x1, x2 of H it’s easy to define linear operators:
just choose where to send x1 and x2, and everything else will be defined
automatically. For example, consider the linear operator Sz that sends |z+〉
to |z+〉, and |z−〉 to −|z−〉. We then have

Sz

(
a
b

)
= Sz (a|z+〉+ b|z−〉) = a|z+〉 − b|z−〉 =

(
a
−b

)
.

In this case we say that |z+〉 is an eigenvector for Sz with eigenvalue +1.
Similarly, |z−〉 is an eigenvector for Sz with eigenvalue −1.

Exercise. Show that Sz is unitary.

Since |x+〉 and |x−〉 also form an orthonormal basis, we can define Sx in
an analogous way. That is, we set Sx|x+〉 = |x+〉 and Sx|x−〉 = −|x−〉, and
then extend linearly to all vectors in H. The operator Sx is also unitary (since
it sends one orthonormal basis to another orthonormal basis). Furthermore,
since |x+〉 = 1√

2
(|z+〉+ |z−〉) and |x−〉 = 1√

2
(|z+〉 − |z−〉), it follows that

Sz|x+〉 = |x−〉, Sz|x−〉 = |x+〉.

Hence, in the current coordinate system

Sz

(
a
b

)
=

(
b
a

)
.

Exercise. Confirm that in the current corrdinate assignment, we have

Sz =

(
1 0
0 −1

)
Sx =

(
0 1
1 0

)
.
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Modelling interference

We’re finally ready to model the experiment with the two reflectors. For
simplicity, we treat the down arrow after the first Sz gate as preparing the
original state m⊗|z−〉. (Later we will revisit the question of what the eraser
E does to the spin-z up states.) We now adopt the following hypothesis (i.e.
proposed dynamical law) for what happens when an electron passes through
Sx gates.

• State m⊗ |x+〉 changes to u⊗ |x+〉.

• State m⊗ |x+〉 changes to d⊗ |x−〉.

• Linear extension: state m⊗(a|x+〉+b|x−〉) = a(m⊗|x+〉)+b(m⊗|x−〉)
changes to state a(u⊗ |x+〉) + b(d⊗ |x−〉).

This hypothesis gives the following particular result: since |z−〉 = 1√
2
(|x−〉−

|x+〉), the initial state (just before Sx) can be rewritten as

m⊗ |z−〉 = m⊗
(

1√
2
(|x−〉 − |x+〉)

)
= 1√

2
(m⊗ |x−〉 −m⊗ |x+〉) .

By linearity, the Sx gate changes this state to the state

1√
2

(d⊗ |x−〉 − u⊗ |x+〉) .

(This looks like an entangled state, and in fact it is!) The top reflector then
serves as a unitary gate that changes u to m; the bottom reflector serves as
a unitary gate that changes d to m. Hence, after the reflectors, the state is
again

1√
2

(m⊗ |x−〉 −m⊗ |x+〉) = m⊗ |z−〉.

That predicts the result: at the final Sz gate, all electrons go into state
d⊗ |z−〉.
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