The Language of Classical Physics

Hans Halvorson

We will mostly deal with the discrete case, which hardly ever comes up
in classical physics. However, the mathematical complications that come in
with infinities, taking integrals, etc., are really beside the point for what we
want to discuss here. In particular, we want to see how the language of
classical physics differs from the language of quantum physics.

1 Probability on finite sets

Definition. Let X be a finite set; the elements of X may be thought of as
pure states, i.e. complete, classical configurations of some system or world.
A probability measure is a map p : X — [0,1] such that > _, p(z) = 1.

Example. When the space X is finite — as we have assumed — there is one
probability measure that seems special or preferred, viz. the flat distribution:

where n is the number of elements in X. However, py is by no means the
only probability distribution on X. For example, for each point x € X, there
is a probability measure that is concentrated on z:

() = 0 ifx=y,
baA¥) = 1 ifz#y.

If p and g are probability measures on X, and A € [0, 1], then Ap + (1 — A)q
is a probability measure on X, called a convex combination of p and q.

Definition. If a state p (i.e. a probability measure) can be written as a non-
trivial convex combination of other states, then we say that p is a mixed
state. Otherwise we say that p is a pure state.



The following result shows that the pure states of X are precisely the
point masses, and hence stand in one-to-one correspondence with elements
of X.

Proposition 1. If p(z) > 0, then p = Ap, + (1 — \)q for some probability
measure q and some \ > 0.

Proof. If p(x) = 1, then p = p, and we're finished. If p(z) < 1, then we may
define

¢ = (1=X""(p—Aps),
where A = p(z). Then

Dyexaly) = (1- p(w))_i D e (p(jv) — Ap2(y))
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Hence ¢ is a probability measure, and by definition p = Ap, + (1 — A)g. O

Proposition 2. A probability measure p on X is pure iff p = p, for some
reX.

Proof. Suppose that p is pure. Let # € X such that p(z) > 0. By the
previous result, p = Ap, + (1 — A)g. Since p is pure, p = p,.

Now we show that p, is pure. Suppose that p, = Ap+ (1 = N)g. I[f y #
then

0 = pa(y) = (1= N)p(y) + Aq(y)-
Hence p(y) = 0 = ¢q(y). Since y was arbitrary, it follows that p =p, =¢. O
Definition. An event or proposition F is defined to be a subset of X.

The events/propositions on X form a Boolean algebra with the oper-
ations A (intersection), V (union), and — (complement). Any event E also
has an associated probability, denoted p(F) and defined by

p(E) = 3 pla).

The map p from subsets of X to probabilities is called a probability mea-
sure, and it satisfies some obvious equations such as

p(EVF) = p(E)+p(F),

when E and F' are disjoint.



Definition. Suppose that p(E£) > 0. Then we define the conditional prob-
ability of F' given E as
p(F'AE)

p(E)
In fact, F' — pg(F) = p(F|E) is the probability measure generated by the
function

) pE)p(z) zecE
pe(r) = {0 + ¢ E.

p(FIE) =

itself a probability measure, and it’s the most conservative choice of a new
probability measure once one learns that E holds. Indeed, define a distance
between probability measures on X as follows:

lp—qll = > Ip(z) — q=)].
zeX
Now let Mg (X) be the set of all probability measures on X with the feature
that ¢(E) = 1. Clearly pp € Mg(X), and it can be shown that

lp—pell < lp—2dll,

for all ¢ € Mg(X). We will leave the details of a proof to the reader, but
intuitively, pg is the only measure on F that results from uniformly stretching
values p(x) for x € E. If that goal is to minimize the distance from p, then
no measure ¢ can do better than a uniform stretch. If ¢ were closer to p at
some point x € F, then ¢ would have to be that much further away from p
at some other point y € E.

Definition. A random variable is a function f : X — R. We will some-
times call f a quantity, or for the sake of comparsion with quantum theory,
an observable.

Example. If X is the classical configuration space R3, then the function
f(x1, z9,x3) = x1 represents the quantity “first coordinate of position.”

Let RX be the set of random variables, i.e. functions from X to R. This
set R¥ naturally forms an algebra where the operations are defined pointwise.
That is, given f, g, we define

(f+9)x) = flz)+g(z),
(fg)(z) = f(z)g(z),
(rf)(x) = rf(z).



Clearly this algebra has a multiplicative identity (the constant 1 function),
and is commutative, i.e. fg = gf.

Definition. The spectrum of f, spec(f) C R, is the image of X under f,
ie.
spec(f) ={f(x) e R:z € X}. (1)

Proposition 3. For a quantity f, the following are equivalent.

1. spec(f) € {0,1}.

2. f is the characteristic function of some subset E of X.

3. f2=1f.

Proof. Suppose first that spec(f) € {0,1}. If £ = {z € X | f(z) = 1}
then f is the characteristic function of E. It’s also clear that a characteristic
function f has the property that f2 = f. Hence (1) = (2) = (3).

Now suppose that f?2 = f. Then for any z € X, f(z)> = f(z), which
implies that f(z) =0 or f(z) = 1. Therefore spec(f) € {0, 1}. O

There is a natural probability density on spec(f) denoted by p; and de-
fined (for A € spec(f)) by

N = 3 pa). (2)

zef~L(N)

More generally, for any n random variables fi,..., f,, there is a discrete
probability density on spec(f;) X --- x spec(f,) given by

Pr,..., fn(/\1>"'7>‘n) = Zp(x) (3)

where = (), X;\;.

Definition. Given a random variable f : X — R, we define the expectation
value of f as

p(f) = Y p(x)f(x). (4)

reX



Definition. If £ C X, then the characteristic function of F is the func-
tion e : X — {0,1} that assigns 1 to = iff x € E.

It follows that p(E) = p(e), where p(E) = Y .pp(r), and pe) =
> rex €(x)p(z). Hence, we can freely interchange application of p to a subset
and that subset’s characteristic function.

Exercise 1. Show that expectation value is linear, i.e. p(f+g) = p(f)+p(9),
and p(rf) = rp(f). Show that expectation value is positive, i.e. p(f) > 0
for any function f such that spec(f) € R*. Show that expectation value
is normalized, i.e. p(1) = 1, where the first “1” is the constant function
on X. Show that expectation value is not necessarily multiplicative, i.e.

p(fg) # p(f)p(g).

Example. If p, is the measure concentrated on a € X, then
pa(f) = D pala)f(z) = f(a),
zeX

for all f € RX. Conversely, if p(f) = f(a) for all f € R¥X, then p(e) = 1
where e is the characteristic function of {a}, and it follows that p = p,.

Proposition 4. A state p is pure iff p(E) € {0,1} for all events E.

Proof. Suppose first that p is pure. By Prop 2, p = p, for some a € X.
Hence

p(E) = pa(E) = ) palx) = {

zeE

0 z€F,
1 z€F.

Suppose now that p(E) € {0,1} for all events F. In particular, p({z}) €
{0,1} for each z € X. Since

1= p(X) = Y p(fa}),

it follows that p({a}) = 1 for some a € X, and hence p = p,. Therefore, p is
pure. O

Definition. Let f be a quantity and let p be a state. The dispersion o(p, f)
of f in p is defined by

a(p. f) = p(f*) = p(f).
We say that p is dispersion free on f just in case o(p, f) = 0.
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If f is a projection, then f2 = f, and hence o(p, f) = p(f)* — p(f).
Therefore p(f) € {0,1} iff o(p, f) = 0.

We now look at the spectral decomposition of a function. For any
subset A\ € spec(f), let

e(A) = {z e X[ f(z) = A},

Using the correspondence between subsets of X and characteristic functions,
it’s obviously true that

f= Xe(A)+ -+ Ae(\).

This fact is completely trivial in the case we are dealing with. But it will be
important to remember the analogy when we derive an analogous result for
quantum probability spaces.

Proposition 5. A state p is pure iff o(p, f) = 0 for all quantities f.

Proof. Suppose that p is pure. By Prop 4, p(g) € {0,1} for all g such that
g* = g. In particular, p(e();)) € {0,1}, for any spectral projection e();) of
f. Hence,

p(f) = Z&p(e(&)) = A

for some \; € spec(f). A similar calculation shows that p(f*) = A?.

Now suppose that o(p, f) = 0 for all quantities f. In particular, o(f?) =
o(f)? for any idempotent f, and hence p(f) € {0,1}. By Prop 4, p is
pure. ]

The following result shows the precise sense in which there are always
hidden variables for classical systems, i.e. any state whatsoever can be in-
terpreted as an ignorance mixture of determinate (i.e. dispersion-free) states.

Proposition 6 (unique decomposition). Every state p on X decomposes
uniquely as a convexr combination of dispersion-free states.

Proof. If X = {x1,...,2,} and A\; = p(x;), then p = >, \ip,,. To see that
the decomposition is unique: if p = Ap, + (1 — \)g where ¢({z}) = 0, then
p(z) = A O



If we let M(X) denote the convex set of all probability measures on X,
then the previous result tells us that M (X) is a simplex.

Proposition 7. Let ¢ : RY — R be a positive linear functional such that
q(1) = 1. Then there is a unique probability measure p on X such that

q(f) = > ,ex p(@)f(2), for each f € RX.

Proof. Let ey, ..., e, be characteristic functions of all singleton subsets of X.
Since ¢ is linear and normalized, we have

L= glen o) = gle) +oe+alen).

Since q is positive, q(e;) € [0, 1]. Hence if we define p(x) = ¢({z}), then pis a
probability measure on X. Now let f be an arbitrary element of RX, and let
e(A),...,e(An) be its spectral decomposition, which means that f(z) = \;
iff e(\;)(z) = 1. Clearly we have

S op@) = > afz}) = qle(n)),

z€e(N;) z€e(N;)
and hence
a(f) = Mgle(M)) + - Amg(e(An))
= )\1]3(6()\1)) + e )‘mp(e()‘m))
= D pex P(x)f().

2 Dynamics

For finite state spaces, the mathematical representation of dynamical evolu-
tion is not very interesting. It’s much more interesting for an infinite space
X that might have further structure — such as a topology, or a metric, or
a symplectic form. In any case, whether X is finite or infinite, one might
assume that dynamical evolution is a “flow” on X, which we can represent
by a parameterized family u; : X — X, t € R of automorphisms of X. Fur-
thermore, it would be natural to require that w; s = wus and u_y = u; L
Notice, however, that this representation presumes determinism, i.e. that
the state of a system at one time fixes the state of the system of future times.



In other words, a family such as {u; | t € R} is a deterministic dynamical
law.

In contrast, a stochastic dynamical law would specify a probability dis-
tribution over future states. For example, p;(x, —) could define a probability
distribution on X. We would then want to specify some further properties
of the map ¢,z — p;(x, —), but we will not pursue that here.

There is another way that one can specify a stochastic dynamical law,
and that is as one-parameter family of morphisms on the space M (X) of
states (i.e. probability distributions) on X. If a pure state p, is mapped
to a mixed state ¢, then that could naturally be interpreted as a stochastic
process, where the transition probability from p, to p, is given by ¢(z).

3 Composite systems

Given two state spaces X and Y, the state space of the composite system is
the Cartesian product

XxY ={{z,y) [zeX,yeY}

In this case, Prop 4 implies that every pure state is of the form p(, . (Note:
The angle-bracket notation (z,y) is put to multiple use in these notes. We
will trust context to disambiguate which way we’re using it.)

The space X x Y has the feature that for any functions f : X — R and
g : X — R, there is a unique function f x g: X x Y — R given by

(f xg)(z,y) = f(x)g(y), (zxeX,yeY).

However, there are also functions on X x Y that do not decompose in this
way. For example, let X =Y = {a, b}, and consider the function p such that

In fact, this function p is a probability measure on X x Y. Intuitively, it’s
a state in which the two systems are strictly correlated: either both are
in state a, or both are in state b. Nonetheless, each state on X x Y is a
convex combination of pure states. In particular, p = >, \ip;, where each
pi is a state of the form p, x p,. This mathematical fact corresponds to the
physical fact that correlated states can be interpreted epistemically, e.g. as
representing our ignorance of the real state of the system, which is a logical
sum of the state of the individual subsystems.
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3.1 Bell’s inequality

For real numbers a,b € [—1, 1], we claim that
la+b|+]a—b < 2. (5)

Indeed, if a + b is positive, then |a + b| + |a — b| = 2max{a, b}, and if a + b
is negative, then |a + b| + |a — b| = 2max{—a, —b}.

Now we consider two systems with state spaces X and Y. Let fi, fo € RX
such that spec(f;) C [~1,1], and let g1, go € RY such that spec(g;) C [—1, 1].
That is, fi; and fy are quantities associated with system X, and ¢g; and ¢»
are quantities associated with system Y. Consider the quantity represented
by the function

r=fix(g+g)+fax (91— g)

This r is called a Bell observable, and it could, in principle, be measured
by two observers with systems X and Y. We then have

|f1(®)g1(y) + f1(2)g2(y) + fo(2)91(y) — fo(2)g2(v)]
|2f1 (z) + fa(@)] + | fr(2) — fa()]

r(z,y)|

VARVANI

where the final inequality follows from Eq. 5, since fi(x), fo(z) € [—1,1].

Bell’s Theorem. If r is a Bell observable, then

p(r)| <2, (6)
for any classical probability measure p.

Equation 6 is called Bell’s inequality, or to be more accurate the CHSH
variant of Bell’s inequality (in honor of Clauser, Horne, Shimony, and Holt).

Proof. The discussion above shows that —2 < ¢(r) < 2 for any pure state
g. An arbitrary state p is a convex combination of pure states, and so the
result holds for p as well. O



3.2 Physical significance of Bell’s theorem

At the time when Bell proved his theorem, it was already known that QM
would predict a violation of Bell’s inequality. (The calculation is quite simple,
as we will see in the the next chapter.) However, at that time, no experiment
had been undertaken to verify QM’s prediction. In the intervening years,
many different experiments have confirmed that Bell’s inequality is violated.
(Most people think that the decisive experiment was the one undertaken by
Alain Aspect in 1982.) Let’s look at the significance of these two facts in
reverse order.

First, what is the significance of the fact that there are experimental
violations of Bell’s inequality? In the first instance, the only significance of
this fact is that the model we made above does not adequately describe those
experimental situations. In other words, if we thought that there were two
systems X and Y, and that classical probability theory was applicable in
the simple way we described above, then we would derive a false prediction
about the outcomes the experiments.

Some other philosophers and physicists have not been so modest in their
claims about what these experiments show. For example, according to Tim
Maudlin, the violation of Bell’s inequality show quite simply that the physical
universe has a feature called “non-locality”.

[John Bell] taught us something about the world we live in, a les-
son that will survive even the complete abandonment of quantum
theory. For what cannot be reconciled with locality is an observ-
able phenomenon: the violations of Bell’s inequality for ‘mea-
surements’ performed at arbitrary distances apart, or at least at
space-like separation. And this phenomenon has been verified,
and continues to be verified, in the lab. Neither indeterministic
nor deterministic theories can recover these predictions in a local
way. Non-locality is here to stay. [Maudlin, 2014, p 22]

Similarly, Travis Norsen claims that, “nonlocality really is required to co-
herently explain the empirical data” [Norsen, 2016]. This is an interesting
point of view, and there are a couple of different ways to read it — either in
the material mode, or in the formal mode. (The material mode is speaking
about the universe, and the formal mode is speaking about theories.) In the
material mode, the claim seems to be that some possible universes are local,
and others are non-local, but that any universe that displays violations of
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Bell’s inequalities is one of the non-local universes. But that claim doesn’t
look anything like what Bell actually proved. Bell didn’t talk about varieties
of universes, and he didn’t give us any insight into what a non-local universe
would look like.

To read Maudlin and Norsen’s claims in the formal mode would have Bell
showing something like this:

There is no theory 17" with property ® such that 7" predicts vio-
lations of Bell’s inequalities

where, in this particular case, ® is the property of being a local theory. Once
again, the claim seems too strong. Bell didn’t do any surveying of the space
of all possible theories, so it’s not clear how his result could show anything
of this sort. Instead, what Bell showed is that a certain familiar kind of
modelling strategy — classical probability — makes the wrong predictions
for these kinds of experiments. We have a long way to go before we can say
anything about all possible future theories.

In fact, in the decades immediately following Bell’s theorem, there was a
different consensus about the physical significance of the result. In partic-
ular, the common view was that Bell’s theorem should be thought of as a
derivation of an (experimentally testable) inequality from the conjunction of
two premises:

realism The moon is there even when no-one is looking.

locality Things that happen in one place cannot have an instantaneous
effect on things in another place.

(The classic “Jarrett analysis” of Bell’s derivation can be found in [Jarrett, 1984].)
I've purposely stated these premises in both a vague, and an overspecific,
way. The point of doing so is that as soon as one starts explicating (i.e.
formalizing) these premises, then one has to beg some questions about the
framework. In standard analyses of Bell’s theorem, one begins immediately

to translate locality into a statement about conditional probabilities. But to
apply classical probability theory to a complicated situation requires making
quite a few physical assumptions about what’s going on.

In the case at hand, note that the Bell observable

Ji X (g1 +g2) + fa x (91 — 92),
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is built out of four different observables: f; and f; belong to the first ex-
perimenter, and ¢g; and g, belong to the second experimenter. Hence, to
successfully carry out a test of Bell’s inequality, the first experimenter must
perform at least two different measurements, and the second experimenter
must also perform at least two different measurements. So, we’re not talking
about any single state of affairs, but a sequence of different experiments. If
we assume that these four experiments can be jointly modelled in the way
that classical physics suggests, then we get a false prediction (i.e. that Bell’s
inequality would be satisfied).
To be clear, to prove a claim of the form

locality = |p(r)| < 2,

one first has to make locality into a mathematically precise statement. So
let’s say that i-locality is our intuitive concept of locality, and let’s say
that m-locality is a mathematical precisification of i-locality. Then Bell’s
theorem is of the form

m-locality = |p(r)] <2,

and the experimental result p(r) > 1 shows that m-locality doesn’t hold.
Does it follow that i-locality doesn’t hold? Well, not unless the intuitive
concept of locality demands a particular mathematical explication. Perhaps

it does; we will have to think about that. (For a similar argument, see
[Werner, 2014].)
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