
Riemann’s Revolution in Geometry

October 27, 2022

Today we are going to talk about the remarkable work of Bernhard Rie-
mann, which has come to serve as the backdrop for Einstein’s general theory
of relativity. Before we turn to Riemann’s article, let me begin with a bit of
mathematical context.

When people talk about “non-euclidean geometry”, then normally mean
the sort of synthetic geometry that was developed by Bolyai and Lobachevsky
in the early part of the 19th century. Here the word “synthetic” means that
the methods are similar to those of Euclid, where the primary representa-
tional tool is natural language supplemented by figures, and where the focus
is on step by step logical deduction. The contrasting approach is sometimes
called “analytic geometry”, and it is characterized by the use of equations
and calculations.

Now, Riemman’s proposal in the 1854 paper is most certainly not squarely
in the tradition of synthetic geometry. And yet in a certain sense, what he
proposes is a generalization of all three synthetic geometries, viz. Euclidean,
hyperbolic, and spherical. I will explain the sense in which it is a generaliza-
tion in just a bit.

The second bit of mathematical context we need is a reminder about
how Euclidean geometry is related to the real numbers. The real number
line R is, of course, familiar to you. It consists of whole numbers, fractions,
and also all those infinite non-repeating decimals that do not correspond to
fractions. For our purposes, the real number line is a good representation of
how Newton understood time. In particular, R comes with a natural notion
of ordering: less than or equal to. In addition, the real number line comes
with a natural notion of distance: the distance between two numbers a, b in
R is just the absolute value |b− a|.

There is, however, one sense in which even Newton would find the real
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numbers to have too much structure to represent time. In particular, R has
an “origin”, viz. the number 0. But Newton has no notion of a preferred
“zero time”. So what he really needs is something like the real numbers with
a less than relationship, and with distances, but without a zero. Actually
what he needs is R as an affine space, a notion that I will not define right
now, but which will be useful later on.

So much for the mathematical representation of Newtonian absolute time.
Let’s proceed now to Newtonian absolute space. First of all, the Cartesian
plane R2 consists of ordered pairs of real numbers. For example, the origin
can be represented by ⟨0, 0⟩, while a point ⟨a, b⟩ is on the unit circle just
in case a2 + b2 = 1. Now, the plane R2 does not have a natural ordering
relation, but it does have a natural distance function. In particular, for two
real numbers ⟨x1, y1⟩ and ⟨x2, y2⟩, we define the distance to be√

(y2 − y1)2 + (x2 − x1)2.

Of course, Newton thinks that space is three dimensional, so he needs to
add a third coordinate, which we can think of as the z-axis. In this case, R3

consists of triples of real numbers, and the distance relationship is given by
the generalized Pythagorean formula:√

(y2 − y1)2 + (x2 − x1)2 + (z2 − z1).

Newton says explicitly that space endures unchanged through time. We
might represent this mathematically by saying that this very same R3 con-
tinues to exist at all times. That also means that we can speak explicitly
about whether or not a physical object is in the same place at two different
times.

This result is actually not ideal for Newton, as it would commit him not
just to absolute acceleration, but also to absolute velocity. In particular, we
can say that an object is stationary through a time interval I just in case
that object is at the same point x ∈ R3 at all times t in I. But none of
Newton’s arguments assume that there really is a difference between being
stationary and moving. All that he needs is that there is a difference between
inertial (constant velocity) and accelerated (changing velocity) motion.

Now, the idea of mixing space and time together did not really come up
until Einstein’s work in the twentieth century. Nonetheless, we can usefully
talk about a notion of “Newtonian spacetime”. In particular, if we now add
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a fourth coordinate for time, then we can say that Newtonian spacetime is
the set R× R3 where R represents time, and where R3 represents space.

Bernhard Riemann was not content with the status of geometry as of
1854. In particular, he claims that geometers adopt a bunch of postulates
— i.e. assumptions about the structure of space — without a clear under-
standing of why they accept them, and how they are related to each other.
Riemann’s proposal will be to start from a more primitive notion of a “multi-
ply extended quantity”, and then to add additional structure to capture the
specific features of the space we actually live in. One way to see what he is
doing here is to redraw the line between what is known a priori about space,
and what is only known a posteriori. In this case, Riemann would be saying
that we know a priori that space is some or other multiply extended quantity,
and we know a posteriori that it has specific metric features. I will now pro-
ceed to clarify what Riemann means by “multiply extended quantity” and
by “metric features”.

1 Commentary Part I

1. (§1) How much structure do we need to even talk about “quantities”?
What is a quantity after all? According to Riemann, the most fun-
damental idea here is of having a concept that admits of multiple in-
stances. Of course we are familiar with such things. Think, for example,
of “height” — one concept with many different instances.

Riemann then points out that for any finite collection of things, it’s
easy to make up a concept that they all fall under. But it’s different for
infinite collections of things. Some of these infinite collections naturally
fall under a single concept, but others do not. Riemann says that
color and the position of sensible objects are the most familiar cases of
concepts whose instances form a continuous manifold.

Now Riemann turns to the question of the quantitative comparison
of different regions in a manifold. In the case of finite manifolds, the
comparison is as simple as counting. But counting does not make
sense for comparing two infinite collections. Consider, for example, the
intervals [0, 1] and [0, 2]. Both of these intervals contain infinitely many
points, but the second is bigger in some sense.

According to Riemann, the way to compare continuous quantities is by
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superposition, i.e. by setting them side by side. But now we are on to
an interesting notion: that there is some intrinsic connection between
static facts about sizes and a concept of “transport” from one place to
another.

2. (§2) In this section, Riemann explains the notion of a manifold by
“synthesizing” it out of manifolds of lower dimension. He first asks us
to consider a manifold where there are only two directions of motion:
forward and backward. The idea, of course, is of an abstract line. He
then asks us to consider the idea of moving such a line continuously,
thereby generating a two-dimensional surface.

This process can then continue, with the result that “this construction
can be characterized as a synthesis of a variability of n+ 1 dimensions
from a variability of n dimensions and variability of one dimension.”

3. (§3) In this section, Riemann describes how a point in a n-dimensional
manifold can be specified by n real numbers. He first asks us to consider
a continuous function x1 that assigns each element of the manifold a real
number, and such that x1 is never constant on a small neighborhood
around any point. He then notes that for each fixed real number r,
the set of points in the manifold that have value r for x1 will form a
continuous manifold of fewer dimensions than the original one.

2 Commentary Part II
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