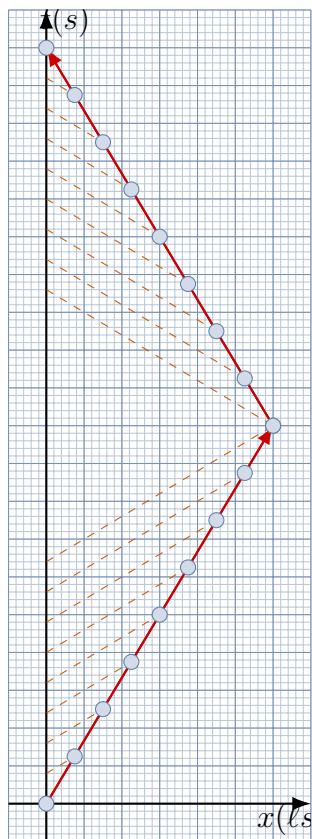


Lecture 21: Twins paradox

The scenario:

1. A and B meet
2. A and B part ways
3. Time passes (for both A and B)
4. A turns around
5. Time passes (for both A and B)
6. A and B meet again
7. Less time has passed for A than has passed for B



1. Clarifications

- (a) The last claim is a *prediction* of STR
- (b) According to the standard interpretation of STR, both A and B have kept time correctly

2. Is this a *paradox*?

If a theory predicts P and not-P, then it is *bad*

3. How does STR predict this?

Some terminology:

- World line = path through spacetime traced by a massive object
- Proper time = time elapsed along a world line

The *clock hypothesis* states that an ideal clock measures the *distance* along a world line

We want to define a notion of “distance” between points $p, q \in M$. The best way to do this is indirectly, via talking about the vectors at the points p and q

Assumption. The space T_p is isomorphic to the space T_q for all $p, q \in M$. We use the name V for this space.

Definition. A *vector space* V over the real numbers \mathbb{R} has a distinguished element $0 \in V$ and two operations:

- Addition: $v, w \mapsto v + w$
- Scalar multiplication: $a, v \mapsto av$

Definition. An *inner product* η on V is a function from pairs of elements of V to \mathbb{R} that is:

- Symmetric
- Linear in both arguments
- Semi-definite: for each $u \in V$ there is a $v \in V$ such that $\eta(u, v) \neq 0$.

Definition. A *subspace* W of V is a subset that contains 0 and is closed under the addition and scalar multiplication operations.

Definition. We say that η is positive definite on W just in case $\eta(v, v) \geq 0$ for all $v \in W$, and $\eta(v, v) = 0$ only if $v = 0$.

Definition. The *signature* of η is a pair of non-negative integers (n^+, n^-) , where n^+ is the maximal possible dimension for a positive definite subspace, and n^- is the maximal possible dimension for a negative definite subspace.

Assumption. Minkowski spacetime is a metric affine space with signature $(1, 3)$, although we often represent it by an affine space with signature $(1, 1)$.

Definition. For $u \in V$, we let $\|u\| = |\langle u, u \rangle|^2$, which we consider to be the generalized length of u .

Proposition (Reverse triangle inequality). Let $u, v \in V$ be timelike vectors. Then $\|u + v\| \geq \|u\| + \|v\|$, with equality iff $u = av$ for some $a \in \mathbb{R}$.

4. What, if anything is the takeaway point of this example?

- (a) Is there no objective notion of the amount of time between events? Whose time is real?

“You have two hours to complete and submit the exam”

5. Confusions

- (a) The physical situations of A and B are exactly the same
- (b) The difference is explained by the fact that A accelerates and B does not
- (c) The faster a clock moves the slower it ticks

6. Clarifications for the technically interested

- (a) The world lines of A and B are *not* symmetric. “ α is straight” is definable in the language of STR. Since α is bent and β is straight, they are not equivalent.

- (b) In fact, spacetime distance is invariant under symmetries. Hence, it is impossible to map a worldline α to a longer worldline β . (Paradox avoided: two observers will always agree about comparisons of proper times.)

Contrast with two observers’ judgments of whether x occurred before y , when x and y are spacelike related