

logic precept 2

Warmup: Deducing

Exercise 2.5 ($\wedge E$, $\wedge I$, $\vee I$, MP , MT , DN)

$$P \rightarrow \neg Q, Q \vdash \neg P$$

$$\neg \neg P \vdash \neg \neg P \wedge (P \vee Q)$$

$$\neg(P \wedge Q) \rightarrow R, \neg R \vdash P$$

$$\neg P \rightarrow \neg Q, Q \vdash P$$

$$P \vdash \neg \neg(P \vee Q)$$

New proof rules

We will work in blocks. The first block leads to problem A1.

$$P \rightarrow Q \vdash P \rightarrow (Q \vee R)$$

$$(P \vee Q) \rightarrow R \vdash P \rightarrow R$$

$$P \rightarrow Q \vdash (R \rightarrow P) \rightarrow (R \rightarrow Q)$$

$$P \rightarrow Q \vdash (Q \rightarrow R) \rightarrow (P \rightarrow R)$$

$$\mathbf{(A1)} \quad P \rightarrow (Q \rightarrow R) \vdash Q \rightarrow (P \rightarrow R)$$

The second block leads to A2. The focus is on the “contrapositive maneuver”.

$$P \rightarrow Q \vdash \neg Q \rightarrow \neg P$$

$$\vdash P \rightarrow (P \vee Q)$$

$$\neg(P \vee Q) \vdash \neg P$$

$$\vdash (P \wedge Q) \rightarrow P$$

$$\mathbf{(A2)} \quad \neg P \vdash \neg(P \wedge Q)$$

The third block leads to A3 and A4.

$$P \vdash (P \rightarrow Q) \rightarrow Q$$

$$\mathbf{(A3)} \quad P \vdash (P \rightarrow \neg P) \rightarrow \neg P$$

$$\mathbf{(A4)} \quad Q \vdash \neg(Q \rightarrow \neg Q)$$

The fourth block leads to problem B1.

$$P \vee Q \vdash Q \vee P$$

$$P \vee (Q \wedge R) \vdash (P \wedge Q) \vee (P \wedge R)$$

$$\mathbf{(B1)} \ P \wedge (Q \vee R) \vdash (P \wedge Q) \vee (P \wedge R)$$

The fifth block leads to problem B2.

$$P, \neg P \vdash Q$$

$$\mathbf{(B2)} \ P \vee Q, \neg P \vdash Q$$

Evaluating proofs

Exercise Which of the following proofs with CP is correct? If a proof is not correct, explain what is wrong with it, and say whether there is a simple fix, or whether it is fatally flawed.

Deps	Line	Formula	Justification
1	(1)	$P \wedge Q$	A
1	(2)	P	1 $\wedge E$
1	(3)	Q	2 $\wedge E$
	(4)	$P \rightarrow Q$	2,3 CP

Deps	Line	Formula	Justification
1	(1)	Q	A
2	(2)	P	A
1	(3)	$P \rightarrow Q$	2,1 CP

Exercise Explain what is wrong with the following “proof”.

Deps	Line	Formula	Justification
1	(1)	$P \vee Q$	A
2	(2)	P	A
3	(3)	Q	A
2,3	(4)	$P \wedge Q$	2,3 $\wedge I$
2,3	(5)	P	4 $\wedge E$
1	(6)	P	1,2,2,3,5 $\vee E$

Additional practice problems

$$\neg P \vee \neg Q \dashv \vdash \neg(P \wedge Q)$$

$$P \rightarrow (P \rightarrow Q) \vdash P \rightarrow Q$$

$$(P \vee Q) \rightarrow R \vdash P \rightarrow R$$

$$P \rightarrow (Q \rightarrow R), P \rightarrow Q \vdash P \rightarrow R$$

$$P \rightarrow (Q \rightarrow R) \vdash (P \rightarrow Q) \rightarrow (P \rightarrow R)$$

$$(P \rightarrow Q) \rightarrow P \vdash (P \rightarrow Q) \rightarrow Q$$

$$(P \rightarrow Q) \rightarrow P \vdash \neg P \rightarrow P$$

$$(P \rightarrow R) \wedge (Q \rightarrow R) \vdash (P \vee Q) \rightarrow R$$

$$P \vee (Q \vee R) \dashv\vdash (P \vee Q) \vee R$$

$$P \wedge (Q \vee R) \dashv\vdash (P \wedge Q) \vee (P \wedge R)$$

$$P \vee (Q \wedge R) \dashv\vdash (P \vee Q) \wedge (P \vee R)$$

$$\neg P \vee Q \dashv\vdash P \rightarrow Q$$

$$\neg(P \rightarrow Q) \dashv\vdash P \wedge \neg Q$$

$$\vdash (P \rightarrow Q) \vee (Q \rightarrow P)$$

$$P \rightarrow (Q \vee R) \vdash (P \rightarrow Q) \vee (P \rightarrow R)$$

$\vdash ((P \rightarrow Q) \rightarrow P) \rightarrow P$ (Hint: One possibility is to first prove $\vdash P \vee \neg P$, and then argue by cases. The first case is easy if you remember “positive paradox”. For the second case, remember “negative paradox”, i.e. that $\neg P$ implies $P \rightarrow Q$.)

$$P \rightarrow (Q \vee R) \vdash \neg R \rightarrow (\neg Q \rightarrow \neg P)$$

$$P \rightarrow \neg P \dashv\vdash \neg P$$

$$(P \rightarrow Q) \rightarrow Q \vdash (Q \rightarrow P) \rightarrow P$$

$$(P \rightarrow Q) \rightarrow R \vdash (P \rightarrow R) \rightarrow R$$

$$(P \rightarrow R) \rightarrow R \dashv\vdash P \vee R$$
 (Hint: derive $\neg P \rightarrow R$ from the sentence on the left.)

$$(P \rightarrow Q) \rightarrow P \dashv\vdash P$$
 (Hint: assume $\neg P$ and derive $P \rightarrow Q$.)