
Metatheory for Propositional Logic

PHI 201 – Introductory Logic

Week 13

1 / 27



Review
We have formulated a theory about propositional logic,
and now we’re proving some facts.
Our new inference rule is mathematical induction —
usually on the construction of sentences, or on the
construction of sequents.
E.g., in the previous lecture, I showed that every
sentence is equivalent to one in which just ∨ and ¬
occur.

2 / 27



Soundness

3 / 27



Theorem. Every line in a correctly written proof is
semantically valid. That is, the sentence in the center column
is a semantic consequence of the dependency sentences.

Method of proof:
1 Show that Rule of Assumptions lines are semantically

valid.
2 Show that the other inference rules transform

semantically valid lines to semantically valid lines.

4 / 27



Induction MP
Suppose that Γ, Δ ⊢ 𝜓 is derived from Γ ⊢ 𝜑 → 𝜓 and
Δ ⊢ 𝜑.

Γ (𝑎) 𝜑 → 𝜓
Δ (𝑏) 𝜑

Γ, Δ (𝑐) 𝜓

Suppose that (a) and (b) are semantically valid.

5 / 27



Induction MP
Let 𝑣 be an arbitrary valuation, and suppose that 𝑣 assigns 1
to all elements of Γ, Δ. Since line (a) is valid,
𝑣(𝜑 → 𝜓) = 1. Since line (b) is valid, 𝑣(𝜑) = 1. By the
truth table for →, it follows that 𝑣(𝜓) = 1. Since 𝑣 was an
arbitrary valuation, any valuation that assigns 1 to all
elements of Γ, Δ also assigns 1 to 𝜓. Therefore, line (c) is
semantically valid.

6 / 27



Induction RA

Suppose that Δ′ is derived from 𝜑 ⊢ 𝜑 and Δ ⊢ ⊥.

𝑎 (𝑎) 𝜑 A
Δ (𝑏) ⊥
Δ′ (𝑐) ¬𝜑

Suppose that (a) and (b) are semantically valid.

7 / 27



Induction RA

Let 𝑣 be an arbitrary valuation, and suppose that 𝑣 assigns 1
to every element of Δ′. Since (b) is valid, 𝑣 does not assign 1
to every element of Δ. Therefore, 𝑣(𝜑) = 0, since 𝜑 is only
thing in Δ that is not in Δ′. Therefore, 𝑣(¬𝜑) = 1. Since 𝑣
was an arbitrary valuation, every valuation that assigns 1 to
all elements of Δ′ also assigns 1 to ¬𝜑, and line (c) is valid.

8 / 27



Disjunctive normal form

9 / 27



Goal: Disjunctive Normal Form (DNF)
DNF: A sentence is in disjunctive normal form if it is a disjunction of
conjunctions of literals.

A literal is either an atomic sentence (e.g. 𝑃, 𝑄, 𝑅) or the
negation of an atomic sentence (e.g. ¬𝑃 ).
A conjunction of literals has the form

𝐿1 ∧ 𝐿2 ∧ ⋯ ∧ 𝐿𝑛,
where each 𝐿𝑖 is a literal.
A sentence is in DNF if it has the form

𝐶1 ∨ 𝐶2 ∨ ⋯ ∨ 𝐶𝑘,
where each 𝐶𝑗 is a conjunction of literals (or a single literal). 10 / 27



Fact 1: Every sentence is provably equivalent to a sentence
in DNF.

Fact 2: A DNF sentence 𝐶1 ∨ ⋯ ∨ 𝐶𝑛 is a semantic
tautology iff for each elementary conjunction 𝐸, there is a 𝐶𝑖
such that 𝐸 ⊢ 𝐶𝑖.

11 / 27



DNF and truth tables
You can “guess” a DNF equivalent of a sentence by looking
at its truth table and taking a disjunction of all the rows in
which its true. For example:

𝑃 𝑄 𝜑
1 0 1

12 / 27



Truth Table for 𝑃 → 𝑄

𝑃 𝑄 𝑃 → 𝑄 (𝑃 ∧ 𝑄) ∨ (¬𝑃 ∧ 𝑄) ∨ (¬𝑃 ∧ ¬𝑄)
1 1 1
1 0 0
0 1 1
0 0 1

13 / 27



DNF algorithm: High-level strategy
Given any sentence 𝜑 built from ∧, ∨, ¬, → and atomic
𝑃 , 𝑄, 𝑅, … :

1 Eliminate all occurrences of →.
2 Push all occurrences of ¬ inwards so that they apply

only to atomic sentences.
3 Distribute ∧ over ∨ to obtain a disjunction of

conjunctions.
4 Clean up: remove unnecessary parentheses, reorder

conjuncts/disjuncts, and combine duplicates if desired.14 / 27



Step 1: Eliminate conditionals
Replace every occurrence of 𝐴 → 𝐵 with ¬𝐴 ∨ 𝐵.

Do this recursively on all subformulas:

(𝜑 → 𝜓) ∧ (𝜒 → 𝜃) ⇝ (¬𝜑 ∨ 𝜓) ∧ (¬𝜒 ∨ 𝜃).

After this step, your sentence uses only ∧, ∨, ¬ and
atomic letters.

15 / 27



Step 2: Push Negations Inward
Use these equivalences repeatedly until ¬ appears only
directly in front of atomic sentences:
¬¬𝐴 ≡ 𝐴 ¬(𝐴 ∧ 𝐵) ≡ ¬𝐴 ∨ ¬𝐵 ¬(𝐴 ∨ 𝐵) ≡ ¬𝐴 ∧ ¬𝐵

Apply these rules from the outside in, simplifying as you
go.
After this step, the sentence is built from ∧, ∨ and
literals (atoms or negated atoms).

16 / 27



Step 3: Distribute ∧ over ∨
To get a disjunction of conjunctions, repeatedly use the distributive
laws:

𝐴 ∧ (𝐵 ∨ 𝐶) ≡ (𝐴 ∧ 𝐵) ∨ (𝐴 ∧ 𝐶)
(𝐴 ∨ 𝐵) ∧ 𝐶 ≡ (𝐴 ∧ 𝐶) ∨ (𝐵 ∧ 𝐶)

Whenever you see a conjunction whose parts contain disjunctions,
distribute.
Also use associativity and commutativity of ∧, ∨ to rearrange and
“flatten”:
𝐴 ∨ (𝐵 ∨ 𝐶) ≡ 𝐴 ∨ 𝐵 ∨ 𝐶, 𝐴 ∧ (𝐵 ∧ 𝐶) ≡ 𝐴 ∧ 𝐵 ∧ 𝐶.

17 / 27



Step 4: Cleanup to Get DNF
After distribution, your sentence should be a disjunction of
conjunctions of literals. Then:

Remove redundant parentheses using associativity.
Optionally, reorder literals and conjunctions to a
standard order (e.g. alphabetically).
Optionally, simplify obvious redundancies, e.g.
(𝑃 ∧ 𝑃 ∧ 𝑄) ≡ (𝑃 ∧ 𝑄)

The resulting sentence is in disjunctive normal form and is
logically equivalent to the original sentence.

18 / 27



Worked Example: From Formula to DNF
Start with (𝑃 → 𝑄) ∧ ¬𝑅
1. Eliminate →:

(𝑃 → 𝑄) ∧ ¬𝑅 ≡ (¬𝑃 ∨ 𝑄) ∧ ¬𝑅.

2. Push negations inward: nothing to do (already on atoms).
3. Distribute ∧ over ∨:

(¬𝑃 ∨ 𝑄) ∧ ¬𝑅 ≡ (¬𝑃 ∧ ¬𝑅) ∨ (𝑄 ∧ ¬𝑅).
Now we have a disjunction of conjunctions of literals, which is in DNF.

19 / 27



Algorithm in Pseudocode
Input: sentence 𝜑 built from ∧, ∨, ¬, → and atomic 𝑃, 𝑄, 𝑅, …

1 ElimCond(𝜑): recursively replace each subformula of the form
(𝐴 → 𝐵) by (¬𝐴 ∨ 𝐵).

2 PushNeg(𝜑): recursively apply ¬¬𝐴 ≡ 𝐴,
¬(𝐴 ∧ 𝐵) ≡ ¬𝐴 ∨ ¬𝐵, ¬(𝐴 ∨ 𝐵) ≡ ¬𝐴 ∧ ¬𝐵 until every ¬ is
on an atom.

3 Distribute(𝜑): recursively apply the distributive laws to move all
∧ inside all ∨.

4 Output the resulting disjunction of conjunctions of literals as the
DNF of the original sentence.

20 / 27



Completeness

21 / 27



Substitution theorem

For a formula 𝜑, let 𝜑′ denote the result of uniformly
substituting formulas for the atomic sentences that occur in
𝜑. We say that 𝜑′ is an substitution instance of 𝜑.

Proposition. If 𝜑1, … , 𝜑𝑛 ⊢ 𝜓 then 𝜑′
1, … , 𝜑′

𝑛 ⊢ 𝜓′.

22 / 27



Proposition. If 𝜑 is not provable, then it has a substitution
instance 𝜑′ such that ⊢ ¬𝜑′.
By the DNF theorem, 𝜑 is provably equivalent to a sentence
𝐶1 ∨ ⋯ ∨ 𝐶𝑛, where each 𝐶𝑖 is a consistent conjunction of
literals.
It’s not hard to see that ⊢ 𝐸1 ∨ ⋯ ∨ 𝐸𝑚, where the 𝐸s are
an exhaustive set of elementary conjunctions.

23 / 27



If each 𝐸𝑗 entailed some 𝐶𝑖, then 𝐶1 ∨ ⋯ ∨ 𝐶𝑛 would be
provable.

Since 𝜑 is not provable, there is an elementary conjunction 𝐸
that does not imply any 𝐶𝑖.

𝐸 ⊢ ¬𝐶𝑖

24 / 27



A substitution that takes 𝐸 to something provable will take
each 𝐶𝑖 to something whose negation is provable.

𝐸 ⊢ ¬𝐶𝑖 ⟹ ⊤ ⊢ ¬𝐶′
𝑖

Therefore ⊢ ¬(𝐶′
1 ∨ ⋯ ∨ 𝐶′

𝑛), and hence ⊢ ¬𝜑′.

25 / 27



Theorem. If 𝜑 is not provable, then there is a valuation 𝑣
such that 𝑣(𝜑) = 0.

Take the elementary conjunction 𝐸 from the previous
argument and use it to define 𝑣.
𝑣(𝐶𝑖) = 0 for 𝑖 = 1, … , 𝑛. Therefore 𝑣(𝐶1 ∨ ⋯ ∨ 𝐶𝑛) = 0.
Since 𝜑 ⊢ 𝐶1 ∨ ⋯ ∨ 𝐶𝑛, soundness implies that 𝑣(𝜑) = 0.

26 / 27



Corollary. If 𝜑1, … , 𝜑𝑛 ⊬ 𝜓, then there is a valuation 𝑣 such
that 𝑣(𝜑𝑖) = 1 and 𝑣(𝜓) = 0.

If ⊢ (𝜑1 ∧ ⋯ ∧ 𝜑𝑛) → 𝜓, then ∧I and MP give
𝜑1, … , 𝜑𝑛 ⊢ 𝜓. So (𝜑1 ∧ ⋯ ∧ 𝜑𝑛) → 𝜓 is not provable. By
the previous theorem, there is a valuation 𝑣 such that
𝑣((𝜑1 ∧ ⋯ ∧ 𝜑𝑛) → 𝜓) = 0. By the truth-tables for ∧ and
→, it follows that 𝑣(𝜑𝑖) = 1 for 𝑖 = 1, … , 𝑛, while
𝑣(𝜓) = 0.

27 / 27


	Soundness
	Disjunctive normal form
	Completeness

