

Metatheory for Propositional Logic

PHI 201 – Introductory Logic

Week 13

Review

- We have formulated a theory *about* propositional logic, and now we're proving some facts.
- Our new inference rule is mathematical induction — usually on the construction of sentences, or on the construction of sequents.
- E.g., in the previous lecture, I showed that every sentence is equivalent to one in which just \vee and \neg occur.

Soundness

Theorem. Every line in a correctly written proof is semantically valid. That is, the sentence in the center column is a semantic consequence of the dependency sentences.

Method of proof:

- ① Show that Rule of Assumptions lines are semantically valid.
- ② Show that the other inference rules transform semantically valid lines to semantically valid lines.

Induction MP

Suppose that $\Gamma, \Delta \vdash \psi$ is derived from $\Gamma \vdash \varphi \rightarrow \psi$ and $\Delta \vdash \varphi$.

$$\begin{array}{l} \Gamma \ (a) \ \varphi \rightarrow \psi \\ \Delta \ (b) \ \varphi \\ \Gamma, \Delta \ (c) \ \psi \end{array}$$

Suppose that (a) and (b) are semantically valid.

Induction MP

Let v be an arbitrary valuation, and suppose that v assigns 1 to all elements of Γ, Δ . Since line (a) is valid, $v(\varphi \rightarrow \psi) = 1$. Since line (b) is valid, $v(\varphi) = 1$. By the truth table for \rightarrow , it follows that $v(\psi) = 1$. Since v was an arbitrary valuation, any valuation that assigns 1 to all elements of Γ, Δ also assigns 1 to ψ . Therefore, line (c) is semantically valid.

Induction RA

Suppose that Δ' is derived from $\varphi \vdash \varphi$ and $\Delta \vdash \perp$.

a (a) φ A

Δ (b) \perp

Δ' (c) $\neg\varphi$

Suppose that (a) and (b) are semantically valid.

Induction RA

Let v be an arbitrary valuation, and suppose that v assigns 1 to every element of Δ' . Since (b) is valid, v does not assign 1 to every element of Δ . Therefore, $v(\varphi) = 0$, since φ is the only thing in Δ that is not in Δ' . Therefore, $v(\neg\varphi) = 1$. Since v was an arbitrary valuation, every valuation that assigns 1 to all elements of Δ' also assigns 1 to $\neg\varphi$, and line (c) is valid.

Disjunctive normal form

Goal: Disjunctive Normal Form (DNF)

DNF: A sentence is in disjunctive normal form if it is a disjunction of conjunctions of literals.

- A **literal** is either an atomic sentence (e.g. P, Q, R) or the negation of an atomic sentence (e.g. $\neg P$).
- A **conjunction of literals** has the form

$$L_1 \wedge L_2 \wedge \cdots \wedge L_n,$$

where each L_i is a literal.

- A sentence is in **DNF** if it has the form

$$C_1 \vee C_2 \vee \cdots \vee C_k,$$

where each C_j is a conjunction of literals (or a single literal).

Fact 1: Every sentence is provably equivalent to a sentence in DNF.

Fact 2: A DNF sentence $C_1 \vee \dots \vee C_n$ is a semantic tautology iff for each elementary conjunction E , there is a C_i such that $E \vdash C_i$.

DNF and truth tables

You can “guess” a DNF equivalent of a sentence by looking at its truth table and taking a disjunction of all the rows in which its true. For example:

P	Q	φ
1	0	1

Truth Table for $P \rightarrow Q$

P	Q	$P \rightarrow Q$	$(P \wedge Q) \vee (\neg P \wedge Q) \vee (\neg P \wedge \neg Q)$
1	1	1	
1	0	0	
0	1	1	
0	0	1	

DNF algorithm: High-level strategy

Given any sentence φ built from $\wedge, \vee, \neg, \rightarrow$ and atomic P, Q, R, \dots :

- ① Eliminate all occurrences of \rightarrow .
- ② Push all occurrences of \neg inwards so that they apply only to atomic sentences.
- ③ Distribute \wedge over \vee to obtain a disjunction of conjunctions.
- ④ Clean up: remove unnecessary parentheses, reorder conjuncts/disjuncts, and combine duplicates if desired.

Step 1: Eliminate conditionals

Replace every occurrence of $A \rightarrow B$ with $\neg A \vee B$.

- Do this recursively on all subformulas:

$$(\varphi \rightarrow \psi) \wedge (\chi \rightarrow \theta) \rightsquigarrow (\neg \varphi \vee \psi) \wedge (\neg \chi \vee \theta).$$

- After this step, your sentence uses only \wedge , \vee , \neg and atomic letters.

Step 2: Push Negations Inward

Use these equivalences repeatedly until \neg appears only directly in front of atomic sentences:

$$\neg\neg A \equiv A \quad \neg(A \wedge B) \equiv \neg A \vee \neg B \quad \neg(A \vee B) \equiv \neg A \wedge \neg B$$

- Apply these rules from the outside in, simplifying as you go.
- After this step, the sentence is built from \wedge , \vee and literals (atoms or negated atoms).

Step 3: Distribute \wedge over \vee

To get a disjunction of conjunctions, repeatedly use the distributive laws:

$$A \wedge (B \vee C) \equiv (A \wedge B) \vee (A \wedge C)$$

$$(A \vee B) \wedge C \equiv (A \wedge C) \vee (B \wedge C)$$

- Whenever you see a conjunction whose parts contain disjunctions, distribute.
- Also use associativity and commutativity of \wedge , \vee to rearrange and “flatten”:

$$A \vee (B \vee C) \equiv A \vee B \vee C, \quad A \wedge (B \wedge C) \equiv A \wedge B \wedge C.$$

Step 4: Cleanup to Get DNF

After distribution, your sentence should be a disjunction of conjunctions of literals. Then:

- Remove redundant parentheses using associativity.
- Optionally, reorder literals and conjunctions to a standard order (e.g. alphabetically).
- Optionally, simplify obvious redundancies, e.g.
$$(P \wedge P \wedge Q) \equiv (P \wedge Q)$$

The resulting sentence is in disjunctive normal form and is logically equivalent to the original sentence.

Worked Example: From Formula to DNF

Start with $(P \rightarrow Q) \wedge \neg R$

1. Eliminate \rightarrow :

$$(P \rightarrow Q) \wedge \neg R \equiv (\neg P \vee Q) \wedge \neg R.$$

2. Push negations inward: nothing to do (already on atoms).

3. Distribute \wedge over \vee :

$$(\neg P \vee Q) \wedge \neg R \equiv (\neg P \wedge \neg R) \vee (Q \wedge \neg R).$$

Now we have a disjunction of conjunctions of literals, which is in DNF.

Algorithm in Pseudocode

Input: sentence φ built from $\wedge, \vee, \neg, \rightarrow$ and atomic P, Q, R, \dots

- 1 **ElimCond**(φ): recursively replace each subformula of the form $(A \rightarrow B)$ by $(\neg A \vee B)$.
- 2 **PushNeg**(φ): recursively apply $\neg\neg A \equiv A$,
 $\neg(A \wedge B) \equiv \neg A \vee \neg B$, $\neg(A \vee B) \equiv \neg A \wedge \neg B$ until every \neg is on an atom.
- 3 **Distribute**(φ): recursively apply the distributive laws to move all \wedge inside all \vee .
- 4 **Output** the resulting disjunction of conjunctions of literals as the DNF of the original sentence.

Completeness

Substitution theorem

For a formula φ , let φ' denote the result of uniformly substituting formulas for the atomic sentences that occur in φ . We say that φ' is an **substitution instance** of φ .

Proposition. If $\varphi_1, \dots, \varphi_n \vdash \psi$ then $\varphi'_1, \dots, \varphi'_n \vdash \psi'$.

Proposition. If φ is not provable, then it has a substitution instance φ' such that $\vdash \neg\varphi'$.

By the DNF theorem, φ is provably equivalent to a sentence $C_1 \vee \dots \vee C_n$, where each C_i is a consistent conjunction of literals.

It's not hard to see that $\vdash E_1 \vee \dots \vee E_m$, where the E 's are an exhaustive set of elementary conjunctions.

If each E_j entailed some C_i , then $C_1 \vee \dots \vee C_n$ would be provable.

Since φ is not provable, there is an elementary conjunction E that does not imply any C_i .

$$E \vdash \neg C_i$$

A substitution that takes E to something provable will take each C_i to something whose negation is provable.

$$E \vdash \neg C_i \implies \top \vdash \neg C'_i$$

Therefore $\vdash \neg(C'_1 \vee \dots \vee C'_n)$, and hence $\vdash \neg\varphi'$.

Theorem. If φ is not provable, then there is a valuation v such that $v(\varphi) = 0$.

Take the elementary conjunction E from the previous argument and use it to define v .

$v(C_i) = 0$ for $i = 1, \dots, n$. Therefore $v(C_1 \vee \dots \vee C_n) = 0$.

Since $\varphi \vdash C_1 \vee \dots \vee C_n$, soundness implies that $v(\varphi) = 0$.

Corollary. If $\varphi_1, \dots, \varphi_n \not\vdash \psi$, then there is a valuation v such that $v(\varphi_i) = 1$ and $v(\psi) = 0$.

If $\vdash (\varphi_1 \wedge \dots \wedge \varphi_n) \rightarrow \psi$, then $\wedge I$ and MP give $\varphi_1, \dots, \varphi_n \vdash \psi$. So $(\varphi_1 \wedge \dots \wedge \varphi_n) \rightarrow \psi$ is not provable. By the previous theorem, there is a valuation v such that $v((\varphi_1 \wedge \dots \wedge \varphi_n) \rightarrow \psi) = 0$. By the truth-tables for \wedge and \rightarrow , it follows that $v(\varphi_i) = 1$ for $i = 1, \dots, n$, while $v(\psi) = 0$.