
Lecture 4

Hans Halvorson
Princeton University

September 29, 2025

1 / 50



Midterm Exam

Monday, October 6 at 1:20pm
80 minutes to complete exam
Cheat sheet: You may bring one sheet of paper with whatever
information you can fit on it (front and back)
No precepts next week (after exam)
No pset this week
To do: Work on practice midterm
To do: Practice problems

2 / 50



Plan for today

Not much new content — mostly stuff that will help you become
more confident with proofs.
Semantics (truth-tables) again

New: Biconditional
New: Classification of sentences

Meta-rules for proofs
Inferring the semantic type of compound sentences

3 / 50



Semantics

4 / 50



Truth table: Biconditional

P Q P ↔ Q
1 1 1
1 0 0
0 1 0
0 0 1

The biconditional P ↔ Q is true (1) exactly when P and Q have the
same truth value.

5 / 50



Semantic classification of sentences

Tautology: The column under the main connective is always
True (1)

Inconsistency: The column under the main connective is always
False (0)

Contingency: The column under the main connective is a mix of
True (1) and False (0)

6 / 50



Semantic classification of sentences

(P ↔ Q) ∨ ((Q ↔ R) ∨ (P ↔ R))

This sentence is a tautology: for any three sentences P ,Q,R , at least
two must have the same truth-value.

7 / 50



Equivalent sentences

Two sentences are said to be logically equivalent just in case they
have the same truth-value in all rows of their joint truth table.

P Q P → Q ¬ P ∨ Q
1 1 1 1 1 0 1 1 1
1 0 1 0 0 0 1 0 0
0 1 0 1 1 1 0 1 1
0 0 0 1 0 1 0 1 0

8 / 50



Equivalent sentences

P Q ¬ (P → Q) P ∧ ¬ Q
1 1 0 1 1 1 1 0 0 1
1 0 1 1 0 0 1 1 1 0
0 1 0 0 1 1 0 0 0 1
0 0 0 0 1 0 0 0 1 0

9 / 50



Equivalent sentences

P → Q ≡ ¬P ∨ Q
¬(P → Q) ≡ P ∧ ¬Q
¬(P ∨ Q) ≡ ¬P ∧ ¬Q
¬(P ∧ Q) ≡ ¬P ∨ ¬Q

10 / 50



Equivalent sentences

P ∧ Q ≡ Q ∧ P
P ∧ P ≡ P
P ∨ P ≡ P

P → ¬P ≡ ¬P

11 / 50



Meta-theorems

12 / 50



Summary

Soundness: If an argument form has a counterexample, then it
cannot be proven.
Completeness: If an argument form has no counterexample, then it
can be proven.
Cut: Proven sequents can act as derived rules.
Replacement: Replacing a subformula of φ with an equivalent
subformula results in an equivalent formula φ′.

13 / 50



Soundness
If the argument from A1, . . . ,Aj to B is not truth-functionally valid (if it
has a counterexample), then A1, . . . ,Aj ` B can not be proven.

Completeness
If the argument from A1, . . . ,Aj to B is truth-functionally valid, then
there is a proof of A1, . . . ,Aj ` B.

If A1, . . . ,Aj 6⊨ B, then no correct proof can end with
A1, . . . ,Aj (n) B.
If A1, . . . ,Aj ⊨ B, then there is a correct proof that ends with that
line.

14 / 50



Consequences of soundness and completeness

Two sentences are logically equivalent if and only if they are
inter-derivable.

P → Q ≡ ¬P ∨ Q
¬(P → Q) ≡ P ∧ ¬Q
¬(P ∨ Q) ≡ ¬P ∧ ¬Q
¬(P ∧ Q) ≡ ¬P ∨ ¬Q

15 / 50



Fragment check I

Can there be a correct proof with these line fragments?

1 (1) P ∨ Q A
2 (2) P ∨ ¬Q A

...
1,2 (n) P

Yes, P ∨ Q, P ∨ ¬Q ⊨ P (easy truth-table reasoning). By
completeness, some proof exists.

16 / 50



Fragment check II: Explosion from inconsistency

1 (1) ¬(P ↔ Q)∧(¬(Q ↔ R)∧¬(P ↔ R)) A
...

1 (n) P ∧ ¬P

Line 1 is inconsistent. From an inconsistency one can derive any
formula. By completeness, there is a correct proof to P ∧ ¬P depending
only on 1.

17 / 50



Fragment check III: Tautology does not entail
contingency

1 (1) P ∨ ¬P A
...

1 (n) Q

P ∨ ¬P is a tautology; Q is a contingency. Since P ∨ ¬P ⊭ Q,
soundness forbids such a proof.

18 / 50



Derived rules

19 / 50



Derived rules

The relationship between the basic rules and derived rules is like the
relationship between machine language and a high-level
programming language (such as Python).
Your thinking can operate at two levels: you can use derived rules
to find a path to a proof, and then fill out the details with basic
rules.
Two kinds of derived rules:

Cut: Inference rules that operate on entire lines
Replacement: Inference rules that operate on subformulas

20 / 50



Ex Falso Quodlibet is a derived inference rule

1 (1) ¬P A
2 (2) P A
3 (3) ¬Q A

1,2 (4) P ∧ ¬P 2,1 ∧I
1,2 (5) ¬¬Q 3,4 RA
1,2 (6) Q 5 DN

21 / 50



Negative paradox is a derived inference rule

1 (1) ¬P A
2 (2) P A

1,2 (3) Q 1,2 EFQ
1 (4) P → Q 2,3 CP

22 / 50



Chain order from derived rules

` (P → Q) ∨ (Q → P)

∅ (1) Q ∨ ¬Q Excluded middle
2 (2) Q A
2 (3) P → Q Positive paradox
2 (4) (P → Q) ∨ (Q → P) 3 ∨I
5 (5) ¬Q A
5 (6) Q → P Negative paradox
5 (7) (P → Q) ∨ (Q → P) 6 ∨I
∅ (8) (P → Q) ∨ (Q → P) 1,2,4,5,7 ∨E

23 / 50



Using derived rules

P → (Q ∨ R) ` (P → Q) ∨ R

1 (1) P → (Q ∨ R) A
2 (2) ¬(P → Q) A
2 (3) P 2 Material conditional

1,2 (4) Q ∨ R 1,3 MP
2 (5) ¬Q 2 Material conditional

1,2 (6) R 4,5 Disjunctive syllogism
1 (7) ¬(P → Q) → R 2,6 CP
1 (8) (P → Q) ∨ R 7 Material conditional

24 / 50



Using derived rules
(P ∧ Q) → R ` (P → R) ∨ (Q → R)

1 (1) (P ∧ Q) → R A
2 (2) ¬(P → R) A
2 (3) ¬R 2 Material conditional

1,2 (4) ¬(P ∧ Q) 1,3 MT
1,2 (5) ¬P ∨ ¬Q 4 DeMorgans

2 (6) P 2 Material conditional
1,2 (7) ¬Q 5,6 Disjunctive syllogism
1,2 (8) Q → R 7 Negative paradox

1 (9) ¬(P → R) → (Q → R) 2,8 CP
1 (10) (P → R) ∨ (Q → R) 9 Material conditional

25 / 50



Substitution instances

26 / 50



Substitution instances

We implicitly assumed that proof rules should be read schematically:
while written as P → Q,P ` P with specific propositional constants P
and Q, it applies to any sentences of these forms.

1 (1) (P ∧ Q) → (Q → R) A
2 (2) P ∧ Q A

1,2 (3) Q → R 1,2 MP

More precisely: the rule applies to substitution instance of P → Q
and P.

27 / 50



Substitution Instances
Definition
A substitution instance of a formula schema is obtained by uniformly
replacing its propositional variables with arbitrary sentences of
propositional logic.

Schema: P → Q
Substitution P := R ∧ S, Q := T

(R ∧ S) → T
Substitution P := ¬R , Q := (S ∨ T )

¬R → (S ∨ T )

Each of these is a substitution instance of the schema P → Q. 28 / 50



What is not a substitution instance?
Reminder
A substitution instance of a formula results from uniformly replacing its
propositional variables with formulas. It does not allow adding, deleting,
or re-arranging structure.

Not substitution instances:
Q is not a substitution instance of ¬P. (We cannot “drop” the
negation sign by substitution.)
S → T is not a substitution instance of P → (Q → P). (No
substitution for P,Q will collapse the schema into S → T .)

Moral: Substitution preserves the tail form of the formula.
29 / 50



Parse trees

A substitution instance of a formula results from extending the leaves in
that formula’s parse tree.

→

∧

P Q

R

30 / 50



How to generate a substitution instance
Idea
A substitution maps each propositional variable to a formula. To
generate a substitution instance, recursively replace variables.
Pseudo-Python:
def substitute(formula, mapping):

if is_var(formula):
return mapping[formula]

elif is_neg(formula): # ¬φ
return Neg(substitute(formula.arg, mapping))

elif is_and(formula): # φ ∧ ψ
return And(substitute(formula.left, mapping),

substitute(formula.right, mapping))
elif is_or(formula): # φ ∨ ψ

return Or(substitute(formula.left, mapping),
substitute(formula.right, mapping))

31 / 50



A substitution consequence

Substitution of R 7→ P ∧ Q in the provable sequent

(P ∧ Q) → R ` (P → R) ∨ (Q → R),

yields

(P ∧ Q) → (P ∧ Q) ` (P → (P ∧ Q)) ∨ (Q → (P ∧ Q)).

Since the premise of the latter sequent is a tautology, its conclusion is a
tautology.

32 / 50



Using already proven results

` (P → (P ∧ Q)) ∨ (Q → (P ∧ Q))

∅ (1) Q ∨ ¬Q Excluded middle
2 (2) Q A
3 (3) P A

2,3 (4) P ∧ Q 3,2 ∧I
2 (5) P → (P ∧ Q) 2,4 CP
6 (6) ¬Q A
6 (7) Q → (P ∧ Q) 6 Negative paradox
∅ (8) (P → (P ∧ Q)) ∨ (Q → (P ∧ Q)) 1,2,5,6,7 ∨E∗

33 / 50



Replacement rules

34 / 50



An unsound rule

∧E+: Any subformula P ∧ Q may be replaced by P.

1 (1) (P ∧ Q) → R A
1 (2) P → R 1 ∧E+

Line (2) is not semantically valid: if P is true and Q and R are false,
then the dependency is true but P → R is false.

35 / 50



A sound rule

Material conditional: Any occurence of P → Q as a subformula may
be replaced by ¬P ∨ Q.

Why is this sound?
m1, . . . ,mj (m) φ

...
m1, . . . ,mj (n) φ[¬P ∨ Q/P → Q] Material conditional

36 / 50



Replacement meta-rule

Statement
Γ ` φ is provable if and only if Γ ` φ′ is provable, where φ′ is the result
of replacing some subformula of φ with a logically equivalent
subformula.

Example:

¬(P → Q) ≡ P ∧ ¬Q

So Γ ` ¬(P → Q) → R if and only if Γ ` (P ∧ ¬Q) → R .

37 / 50



Useful equivalences

P → Q ≡ ¬P ∨ Q
¬(P → Q) ≡ P ∧ ¬Q

P → Q ≡ ¬Q → ¬P
¬(P ∨ Q) ≡ ¬P ∧ ¬Q
¬(P ∧ Q) ≡ ¬P ∨ ¬Q

P ↔ Q ≡ (P ∧ Q) ∨ (¬P ∧ ¬Q)

38 / 50



Useful equivalences

P ∨ Q ≡ Q ∨ P
P ∨ (Q ∨ R) ≡ (P ∨ Q) ∨ R

P ∨ P ≡ P

39 / 50



Useful equivalences

P → (Q → R) ≡ (P ∧ Q) → R
P ∧ (Q ∨ R) ≡ (P ∧ Q) ∨ (P ∧ R)

P ∨ (Q ∧ R) ≡ (P ∨ Q) ∧ (P ∨ R)

40 / 50



Chain of equivalences

(P ∧ Q) → R ≡ P → (Q → R)

≡ ¬P ∨ (¬Q ∨ R)

≡ ¬P ∨ (¬Q ∨ (R ∨ R))

≡ (¬P ∨ R) ∨ (¬Q ∨ R)

≡ (P → R) ∨ (Q → R)

41 / 50



Proofs with replacement rules

∅ (1) P ∨ ¬P Excluded middle
∅ (2) (¬P ∨ Q) ∨ (¬Q ∨ P) 1 ∨I
∅ (3) (P → Q) ∨ (Q → P) 2 Material conditional

42 / 50



Translation aided by
semantics

43 / 50



I will leave Princeton unless they give me a substantial raise.

Option 1: R ∨ ¬P
Option 2: ¬R → ¬P
Option 3: R → P
Option 4: ¬R ↔ ¬P
Option 5: R ↔ P

44 / 50



I will stay at Princeton only if they give me a substantial raise.

Option 1: P → R
Option 2: R → P
Option 3: P ↔ R

45 / 50



Desmond is either in Princeton or in Queens.

Option 1: P ∨ Q
Option 2: P ↔ ¬Q
Option 3: (P ∨ Q) ∧ ¬(P ∧ Q)

46 / 50



Inferring types of sentences

47 / 50



Type of Φ ∨ Ψ when both contingencies

Cannot be an inconsistency (since Φ is true on some row, making
Φ ∨Ψ true there).
Could be a contingency (e.g. P ∨ Q).
Could be a tautology (e.g. P ∨ ¬P).

48 / 50



Type of Φ → Ψ when Φ is a tautology

If Φ is a tautology, then Φ → Ψ ≡ Ψ. Therefore Φ → Ψ has the same
type as Ψ (contingency if Ψ is).
Exercise. Build a 3× 3 table for Φ → Ψ over the cases where each of
Φ,Ψ is a tautology, inconsistency, or contingency.

49 / 50



Wrap-up

Soundness/Completeness connect proofs to truth-tables, giving
another way to discern logical relations.
Using standard moves (e.g. material conditional) plus
cut/replacement can transform difficult proofs into routine
exercises.
When translating, consider whether the target sentence has the
intended logical relations.

50 / 50


	Semantics
	Meta-theorems
	Derived rules
	Substitution instances
	Replacement rules
	Translation aided by semantics
	Inferring types of sentences

