

Lecture 4

Hans Halvorson

Princeton University

September 29, 2025

Midterm Exam

- Monday, October 6 at 1:20pm
- 80 minutes to complete exam
- Cheat sheet: You may bring one sheet of paper with whatever information you can fit on it (front and back)
- No precepts next week (after exam)
- No pset this week
- To do: Work on practice midterm
- To do: Practice problems

Plan for today

- Not much new content — mostly stuff that will help you become more confident with proofs.
- Semantics (truth-tables) again
 - New: Biconditional
 - New: Classification of sentences
- Meta-rules for proofs
- Inferring the semantic type of compound sentences

Semantics

Truth table: Biconditional

P	Q	$P \leftrightarrow Q$
1	1	1
1	0	0
0	1	0
0	0	1

The biconditional $P \leftrightarrow Q$ is true (1) exactly when P and Q have the same truth value.

Semantic classification of sentences

Tautology: The column under the main connective is always True (1)

Inconsistency: The column under the main connective is always False (0)

Contingency: The column under the main connective is a mix of True (1) and False (0)

Semantic classification of sentences

$$(P \leftrightarrow Q) \vee ((Q \leftrightarrow R) \vee (P \leftrightarrow R))$$

This sentence is a tautology: for any three sentences P, Q, R , at least two must have the same truth-value.

Equivalent sentences

Two sentences are said to be **logically equivalent** just in case they have the same truth-value in all rows of their joint truth table.

P	Q	$P \rightarrow Q$	$\neg P \vee Q$				
1	1	1	1	1	0	1	1
1	0	1	0	0	0	1	0
0	1	0	1	1	1	0	1
0	0	0	1	0	1	0	0

Equivalent sentences

P	Q	$\neg (P \rightarrow Q)$	$P \wedge \neg Q$
1	1	0 1 1 1	1 0 0 1
1	0	1 1 0 0	1 1 1 0
0	1	0 0 1 1	0 0 0 1
0	0	0 0 1 0	0 0 1 0

Equivalent sentences

$$P \rightarrow Q \equiv \neg P \vee Q$$

$$\neg(P \rightarrow Q) \equiv P \wedge \neg Q$$

$$\neg(P \vee Q) \equiv \neg P \wedge \neg Q$$

$$\neg(P \wedge Q) \equiv \neg P \vee \neg Q$$

Equivalent sentences

$$P \wedge Q \equiv Q \wedge P$$

$$P \wedge P \equiv P$$

$$P \vee P \equiv P$$

$$P \rightarrow \neg P \equiv \neg P$$

Meta-theorems

Summary

- Soundness: If an argument form has a counterexample, then it cannot be proven.
- Completeness: If an argument form has no counterexample, then it can be proven.
- Cut: Proven sequents can act as **derived rules**.
- Replacement: Replacing a subformula of φ with an equivalent subformula results in an equivalent formula φ' .

Soundness

If the argument from A_1, \dots, A_j to B is **not** truth-functionally valid (if it has a counterexample), then $A_1, \dots, A_j \vdash B$ can **not** be proven.

Completeness

If the argument from A_1, \dots, A_j to B is truth-functionally valid, then there is a proof of $A_1, \dots, A_j \vdash B$.

- If $A_1, \dots, A_j \not\vdash B$, then no correct proof can end with $A_1, \dots, A_j (n) B$.
- If $A_1, \dots, A_j \vDash B$, then there is a correct proof that ends with that line.

Consequences of soundness and completeness

Two sentences are **logically equivalent** if and only if they are **inter-derivable**.

$$P \rightarrow Q \equiv \neg P \vee Q$$

$$\neg(P \rightarrow Q) \equiv P \wedge \neg Q$$

$$\neg(P \vee Q) \equiv \neg P \wedge \neg Q$$

$$\neg(P \wedge Q) \equiv \neg P \vee \neg Q$$

Fragment check I

Can there be a correct proof with these line fragments?

1 (1) $P \vee Q$ A

2 (2) $P \vee \neg Q$ A

⋮

1,2 (n) P

Yes, $P \vee Q, P \vee \neg Q \models P$ (easy truth-table reasoning). By completeness, some proof exists.

Fragment check II: Explosion from inconsistency

1 (1) $\neg(P \leftrightarrow Q) \wedge (\neg(Q \leftrightarrow R) \wedge \neg(P \leftrightarrow R))$ A
⋮
1 (n) $P \wedge \neg P$

Line 1 is inconsistent. From an inconsistency one can derive any formula. By completeness, there is a correct proof to $P \wedge \neg P$ depending only on 1.

Fragment check III: Tautology does not entail contingency

1 (1) $P \vee \neg P$ A
⋮
1 (n) Q

$P \vee \neg P$ is a tautology; Q is a contingency. Since $P \vee \neg P \not\leq Q$, soundness forbids such a proof.

Derived rules

Derived rules

- The relationship between the basic rules and derived rules is like the relationship between machine language and a high-level programming language (such as Python).
- Your thinking can operate at two levels: you can use derived rules to find a path to a proof, and then fill out the details with basic rules.
- Two kinds of derived rules:
 - **Cut:** Inference rules that operate on entire lines
 - **Replacement:** Inference rules that operate on subformulas

Ex Falso Quodlibet is a derived inference rule

1	(1)	$\neg P$	A
2	(2)	P	A
3	(3)	$\neg Q$	A
1,2	(4)	$P \wedge \neg P$	2,1 $\wedge I$
1,2	(5)	$\neg \neg Q$	3,4 RA
1,2	(6)	Q	5 DN

Negative paradox is a derived inference rule

1	(1)	$\neg P$	A
2	(2)	P	A
1,2	(3)	Q	1,2 EFQ
1	(4)	$P \rightarrow Q$	2,3 CP

Chain order from derived rules

$\vdash (P \rightarrow Q) \vee (Q \rightarrow P)$

\emptyset	(1)	$Q \vee \neg Q$	Excluded middle
2	(2)	Q	A
2	(3)	$P \rightarrow Q$	Positive paradox
2	(4)	$(P \rightarrow Q) \vee (Q \rightarrow P)$	3 $\vee I$
5	(5)	$\neg Q$	A
5	(6)	$Q \rightarrow P$	Negative paradox
5	(7)	$(P \rightarrow Q) \vee (Q \rightarrow P)$	6 $\vee I$
\emptyset	(8)	$(P \rightarrow Q) \vee (Q \rightarrow P)$	1,2,4,5,7 $\vee E$

Using derived rules

$$P \rightarrow (Q \vee R) \vdash (P \rightarrow Q) \vee R$$

1	(1)	$P \rightarrow (Q \vee R)$	A
2	(2)	$\neg(P \rightarrow Q)$	A
2	(3)	P	2 Material conditional
1,2	(4)	$Q \vee R$	1,3 MP
2	(5)	$\neg Q$	2 Material conditional
1,2	(6)	R	4,5 Disjunctive syllogism
1	(7)	$\neg(P \rightarrow Q) \rightarrow R$	2,6 CP
1	(8)	$(P \rightarrow Q) \vee R$	7 Material conditional

Using derived rules

$$(P \wedge Q) \rightarrow R \vdash (P \rightarrow R) \vee (Q \rightarrow R)$$

1	(1)	$(P \wedge Q) \rightarrow R$	A
2	(2)	$\neg(P \rightarrow R)$	A
2	(3)	$\neg R$	2 Material conditional
1,2	(4)	$\neg(P \wedge Q)$	1,3 MT
1,2	(5)	$\neg P \vee \neg Q$	4 DeMorgans
2	(6)	P	2 Material conditional
1,2	(7)	$\neg Q$	5,6 Disjunctive syllogism
1,2	(8)	$Q \rightarrow R$	7 Negative paradox
1	(9)	$\neg(P \rightarrow R) \rightarrow (Q \rightarrow R)$	2,8 CP
1	(10)	$(P \rightarrow R) \vee (Q \rightarrow R)$	9 Material conditional

Substitution instances

Substitution instances

We implicitly assumed that proof rules should be read **schematically**: while written as $P \rightarrow Q$, $P \vdash P$ with specific propositional constants P and Q , it applies to any sentences of these forms.

1	(1)	$(P \wedge Q) \rightarrow (Q \rightarrow R)$	A
2	(2)	$P \wedge Q$	A
1,2	(3)	$Q \rightarrow R$	1,2 MP

More precisely: the rule applies to **substitution instance** of $P \rightarrow Q$ and P .

Substitution Instances

Definition

A **substitution instance** of a formula schema is obtained by uniformly replacing its propositional variables with arbitrary sentences of propositional logic.

Schema: $P \rightarrow Q$

- Substitution $P := R \wedge S, Q := T$

$$(R \wedge S) \rightarrow T$$

- Substitution $P := \neg R, Q := (S \vee T)$

$$\neg R \rightarrow (S \vee T)$$

Each of these is a substitution instance of the schema $P \rightarrow Q$.

What is *not* a substitution instance?

Reminder

A substitution instance of a formula results from *uniformly replacing* its propositional variables with formulas. It does *not* allow adding, deleting, or re-arranging structure.

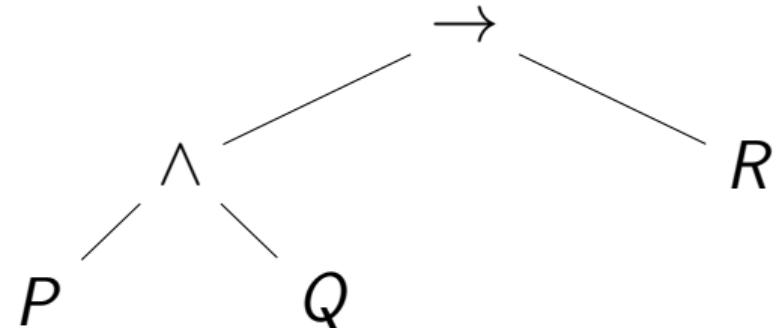
Not substitution instances:

- Q is not a substitution instance of $\neg P$. (We cannot “drop” the negation sign by substitution.)
- $S \rightarrow T$ is not a substitution instance of $P \rightarrow (Q \rightarrow P)$. (No substitution for P, Q will collapse the schema into $S \rightarrow T$.)

Moral: Substitution preserves the *tail form* of the formula.

Parse trees

A substitution instance of a formula results from extending the leaves in that formula's parse tree.



How to generate a substitution instance

Idea

A substitution maps each propositional variable to a formula. To generate a substitution instance, recursively replace variables.

Pseudo-Python:

```
def substitute(formula, mapping):
    if is_var(formula):
        return mapping[formula]
    elif is_neg(formula):          #  $\neg\varphi$ 
        return Neg(substitute(formula.arg, mapping))
    elif is_and(formula):          #  $\varphi \wedge \psi$ 
        return And(substitute(formula.left, mapping),
                   substitute(formula.right, mapping))
    elif is_or(formula):           #  $\varphi \vee \psi$ 
        return Or(substitute(formula.left, mapping),
                  substitute(formula.right, mapping))
```

A substitution consequence

Substitution of $R \mapsto P \wedge Q$ in the provable sequent

$$(P \wedge Q) \rightarrow R \vdash (P \rightarrow R) \vee (Q \rightarrow R),$$

yields

$$(P \wedge Q) \rightarrow (P \wedge Q) \vdash (P \rightarrow (P \wedge Q)) \vee (Q \rightarrow (P \wedge Q)).$$

Since the premise of the latter sequent is a tautology, its conclusion is a tautology.

Using already proven results

$$\vdash (P \rightarrow (P \wedge Q)) \vee (Q \rightarrow (P \wedge Q))$$

\emptyset	(1)	$Q \vee \neg Q$	Excluded middle
2	(2)	Q	A
3	(3)	P	A
2,3	(4)	$P \wedge Q$	3,2 $\wedge I$
2	(5)	$P \rightarrow (P \wedge Q)$	2,4 CP
6	(6)	$\neg Q$	A
6	(7)	$Q \rightarrow (P \wedge Q)$	6 Negative paradox
\emptyset	(8)	$(P \rightarrow (P \wedge Q)) \vee (Q \rightarrow (P \wedge Q))$	1,2,5,6,7 $\vee E^*$

Replacement rules

An unsound rule

$\wedge E^+$: Any subformula $P \wedge Q$ may be replaced by P .

1	(1)	$(P \wedge Q) \rightarrow R$	A
1	(2)	$P \rightarrow R$	$1 \wedge E^+$

Line (2) is not semantically valid: if P is true and Q and R are false, then the dependency is true but $P \rightarrow R$ is false.

A sound rule

Material conditional: Any occurrence of $P \rightarrow Q$ as a subformula may be replaced by $\neg P \vee Q$.

Why is this sound?

m_1, \dots, m_j	(m)	φ	
	⋮		
m_1, \dots, m_j	(n)	$\varphi[\neg P \vee Q / P \rightarrow Q]$	Material conditional

Replacement meta-rule

Statement

$\Gamma \vdash \varphi$ is provable if and only if $\Gamma \vdash \varphi'$ is provable, where φ' is the result of replacing some **subformula** of φ with a logically equivalent subformula.

Example:

$$\neg(P \rightarrow Q) \equiv P \wedge \neg Q$$

So $\Gamma \vdash \neg(P \rightarrow Q) \rightarrow R$ if and only if $\Gamma \vdash (P \wedge \neg Q) \rightarrow R$.

Useful equivalences

$$P \rightarrow Q \equiv \neg P \vee Q$$

$$\neg(P \rightarrow Q) \equiv P \wedge \neg Q$$

$$P \rightarrow Q \equiv \neg Q \rightarrow \neg P$$

$$\neg(P \vee Q) \equiv \neg P \wedge \neg Q$$

$$\neg(P \wedge Q) \equiv \neg P \vee \neg Q$$

$$P \leftrightarrow Q \equiv (P \wedge Q) \vee (\neg P \wedge \neg Q)$$

Useful equivalences

$$P \vee Q \equiv Q \vee P$$

$$P \vee (Q \vee R) \equiv (P \vee Q) \vee R$$

$$P \vee P \equiv P$$

Useful equivalences

$$P \rightarrow (Q \rightarrow R) \equiv (P \wedge Q) \rightarrow R$$

$$P \wedge (Q \vee R) \equiv (P \wedge Q) \vee (P \wedge R)$$

$$P \vee (Q \wedge R) \equiv (P \vee Q) \wedge (P \vee R)$$

Chain of equivalences

$$\begin{aligned}(P \wedge Q) \rightarrow R &\equiv P \rightarrow (Q \rightarrow R) \\ &\equiv \neg P \vee (\neg Q \vee R) \\ &\equiv \neg P \vee (\neg Q \vee (R \vee R)) \\ &\equiv (\neg P \vee R) \vee (\neg Q \vee R) \\ &\equiv (P \rightarrow R) \vee (Q \rightarrow R)\end{aligned}$$

Proofs with replacement rules

$$\emptyset \quad (1) \quad P \vee \neg P$$

$$\emptyset \quad (2) \quad (\neg P \vee Q) \vee (\neg Q \vee P)$$

$$\emptyset \quad (3) \quad (P \rightarrow Q) \vee (Q \rightarrow P)$$

Excluded middle

1 $\vee I$

2 Material conditional

Translation aided by
semantics

I will leave Princeton unless they give me a substantial raise.

Option 1: $R \vee \neg P$

Option 2: $\neg R \rightarrow \neg P$

Option 3: $R \rightarrow P$

Option 4: $\neg R \leftrightarrow \neg P$

Option 5: $R \leftrightarrow P$

I will stay at Princeton only if they give me a substantial raise.

Option 1: $P \rightarrow R$

Option 2: $R \rightarrow P$

Option 3: $P \leftrightarrow R$

Desmond is either in Princeton or in Queens.

Option 1: $P \vee Q$

Option 2: $P \leftrightarrow \neg Q$

Option 3: $(P \vee Q) \wedge \neg(P \wedge Q)$

Inferring types of sentences

Type of $\Phi \vee \Psi$ when both contingencies

- Cannot be an inconsistency (since Φ is true on some row, making $\Phi \vee \Psi$ true there).
- Could be a contingency (e.g. $P \vee Q$).
- Could be a tautology (e.g. $P \vee \neg P$).

Type of $\Phi \rightarrow \Psi$ when Φ is a tautology

If Φ is a tautology, then $\Phi \rightarrow \Psi \equiv \Psi$. Therefore $\Phi \rightarrow \Psi$ has the same type as Ψ (contingency if Ψ is).

Exercise. Build a 3×3 table for $\Phi \rightarrow \Psi$ over the cases where each of Φ, Ψ is a tautology, inconsistency, or contingency.

Wrap-up

- Soundness/Completeness connect proofs to truth-tables, giving another way to discern logical relations.
- Using standard moves (e.g. material conditional) plus cut/replacement can transform difficult proofs into routine exercises.
- When translating, consider whether the target sentence has the intended logical relations.