

PHI 201: Week 2

Supposition & Hypothetical Reasoning

Hans Halvorson

September 15, 2025

Deducing versus Supposing

- A new kind of rule
- A new kind of proof format

A simple example

Argument

- ① If P then Q
- ② If Q then R
- ③ Therefore, if P then R

- What licences inferring a **conditional** statement?
- Hypothetical thinking: Supposing

How to prevent mistakes when supposing

- Repaying your debts
- If P then Q
- If Q then R

Keeping track of assumptions

Rule of Assumptions (A)

Form of the rule

$n \quad (n) \varphi \quad A$

Explanation

- On line (n) , you may write any formula φ .
- The dependency of line (n) is its own line number n .
- The justification is marked A (Assumption).

\wedge -Introduction ($\wedge I$)

Form of the rule

$\Delta \quad (m) \quad P$

$\Gamma \quad (n) \quad Q$

$\Delta, \Gamma \quad (k) \quad P \wedge Q$

$m, n \wedge I$

Explanation

- If you have P on line m (with dependencies Δ), and Q on line n (with dependencies Γ), then you may infer $P \wedge Q$.
- The new line k depends on all assumptions of both lines, i.e. the union of Δ and Γ .
- The justification cites both lines: $m, n \wedge I$

\wedge -Elimination ($\wedge E$)

Form of the rule

$\Delta \quad (m) \quad P \wedge Q$

$\Delta \quad (k) \quad P$

$m \wedge E$

Explanation

- If you have $P \wedge Q$ on line m (with dependencies Δ), you may infer either conjunct.
- The new line k carries exactly the same dependency set Δ .
- The justification cites line m : $m \wedge E$.

Keeping track of dependencies

Deps	Line	Formula	Justification
1	(1)	$P \wedge Q$	A
1	(2)	P	1 $\wedge E$
1	(3)	Q	1 $\wedge E$
1	(4)	$Q \wedge P$	3,2 $\wedge I$

\vee -Introduction ($\vee I$)

Form of the rule

$\Delta \quad (m) \quad P$

$\Delta \quad (k) \quad P \vee Q$

$m \quad \vee I$

Explanation

- If you have P on line m (with dependencies Δ), you may infer a disjunction $P \vee Q$ on a new line.
- You are free to introduce any formula Q as the other disjunct.
- The new line k carries the same dependencies Δ .
- The justification cites the original line: $m \vee E$.

Modus Ponens (MP)

Form of the rule

$$\begin{array}{ll} \Delta & (m) \quad P \rightarrow Q \\ \Gamma & (n) \quad P \\ \hline \Delta, \Gamma & (k) \quad Q \end{array} \qquad m, n \text{ MP}$$

Explanation

- If you have $P \rightarrow Q$ on line m (with dependencies Δ) and P on line n (with dependencies Γ), then you may infer Q .
- The new line k carries the union of dependencies: $\Delta \cup \Gamma$.
- The justification cites both lines: m, n MP.

Modus Tollens (MT)

Form of the rule

$$\begin{array}{ll} \Delta \quad (m) \quad P \rightarrow Q \\ \Gamma \quad (n) \quad \neg Q \\ \hline \Delta, \Gamma \quad (k) \quad \neg P \end{array} \qquad m, n \text{ MT}$$

Explanation

- If you have $P \rightarrow Q$ on line m (with dependencies Δ), and $\neg Q$ on line n (with dependencies Γ), then you may infer $\neg P$.
- The new line k depends on all assumptions of both lines, i.e. $\Delta \cup \Gamma$.
- The justification cites both lines: m, n MT.

Keeping track of dependencies

Deps	Line	Formula	Justification
1	(1)	$P \rightarrow (Q \rightarrow R)$	A
2	(2)	$\neg R \wedge P$	A
2	(3)	P	2 $\wedge E$
1,2	(4)	$Q \rightarrow R$	1,3 MP
2	(5)	$\neg R$	2 $\wedge E$
1,2	(6)	$\neg Q$	4,5 MT

Double Negation (DN)

Form of the rule

$\Delta \ (m) \ P$

$\Delta \ (k) \ \neg\neg P$

$m \text{ DN}$

$\Delta \ (m) \ \neg\neg P$

$\Delta \ (k) \ P$

$m \text{ DN}$

Explanation

- From P you may infer $\neg\neg P$, or from $\neg\neg P$ you may infer P .
- In either case, the dependency set Δ is preserved.
- The justification cites the relevant line: $m \text{ DN}$.

Summary

- For all of the deducing rules (Chapter 2), the dependencies on the new line are the aggregate of the dependencies of the cited lines.
- Dependency order does not matter
1, 2 is the same as 2, 1
- Dependency duplication does not matter
No difference between 1, 1 and 1

Summary

Key Idea

Each proof line makes a statement:

$$\Delta(n)P \quad *$$

The sentences on lines Δ logically imply P .

Watch Out!

Hint: keep an eye out for suspicious lines, for example:

$$1 \quad (1) \quad P \quad \quad \quad A$$

•
•
•

1 (n) $P \wedge Q$

Conditional proof

Conditional Proof (CP)

Form of the rule

$$\begin{array}{llll} n & (n) & P & \\ \Delta & (m) & Q & \\ \Delta \setminus \{n\} & (k) & P \rightarrow Q & n, m \text{ CP} \end{array}$$

Explanation

- Start a subproof at line n by assuming P (A).
- Derive Q on line m with dependencies Δ .
- By CP, infer $P \rightarrow Q$ on line k ; its dependencies are $\Delta \setminus \{n\}$ (discharge n).

Conditional proof

Deps	Line	Formula	Justification
1	(1)	$P \rightarrow Q$	A
2	(2)	$Q \rightarrow R$	A
3	(3)	P	A
1,3	(4)	Q	1,3 MP
1,2,3	(5)	R	2,4 MP
1,2	(6)	$P \rightarrow R$	3,5 CP

Conditional proof

Deps	Line	Formula	Justification
1	(1)	$(P \wedge Q) \rightarrow R$	A
2	(2)	P	A
3	(3)	Q	A
2,3	(4)	$P \wedge Q$	2,3 $\wedge I$
1,2,3	(5)	R	1,4 MP
1,2	(6)	$Q \rightarrow R$	3,5 CP
1	(7)	$P \rightarrow (Q \rightarrow R)$	2,6 CP

Contrapositive

Deps	Line	Formula	Justification
1	(1)	$P \rightarrow Q$	Assumption
2	(2)	$\neg Q$	A
1,2	(3)	$\neg P$	1,2 MT
1	(4)	$\neg Q \rightarrow \neg P$	2,3 CP

Proofs without premises

Deps	Line	Formula	Justification
1	(1)	$P \wedge Q$	A
1	(2)	P	1 $\wedge E$
	(3)	$(P \wedge Q) \rightarrow P$	1,2 CP

DeMorgan's rule

Deps	Line	Formula	Justification
1	(1)	$\neg(P \vee Q)$	Assumption
2	(2)	P	A
2	(3)	$P \vee Q$	2 $\vee I$
\emptyset	(4)	$P \rightarrow (P \vee Q)$	2,3 CP
1	(5)	$\neg P$	4,1 MT

Proofs without premises

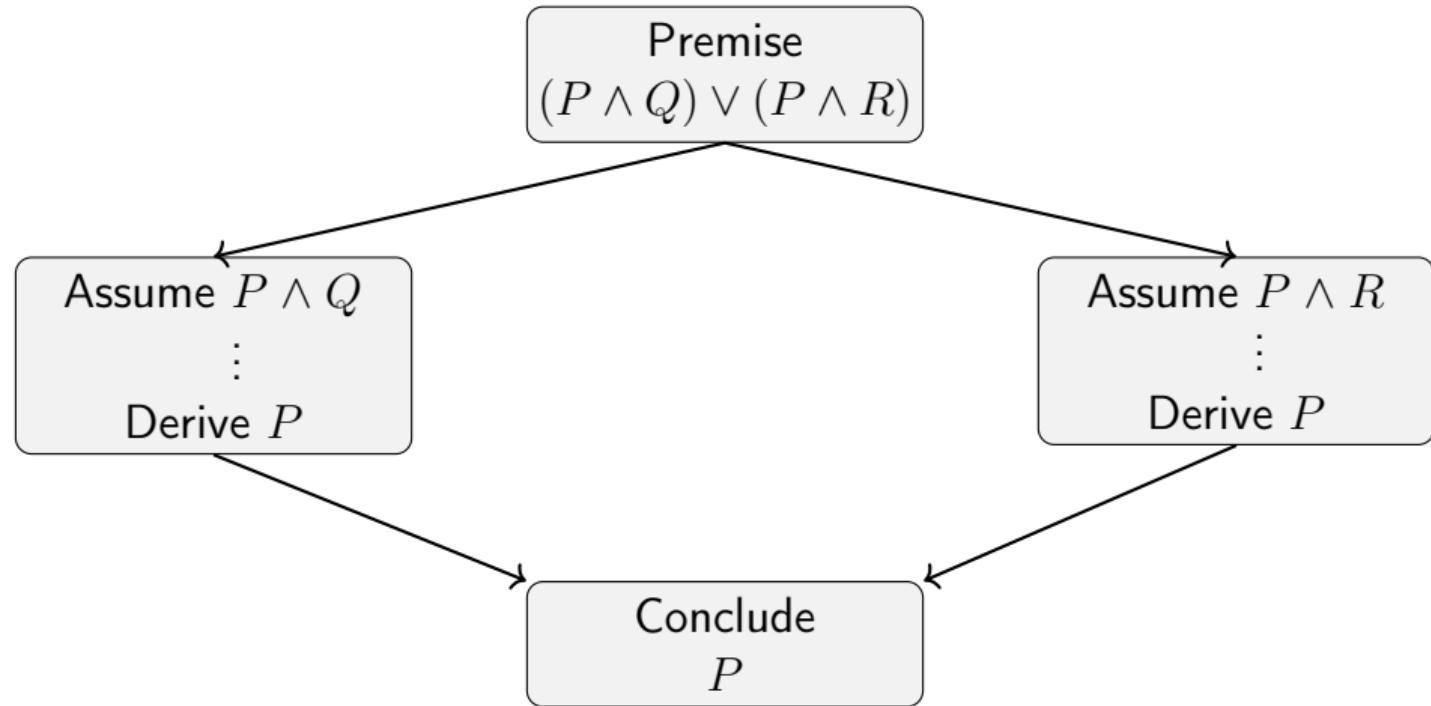
Deps	Line	Formula	Justification
1	(1)	P	A
	(2)	$P \rightarrow P$	1,1 CP

Conditional proof

Deps	Line	Formula	Justification
1	(1)	$P \wedge Q$	A
1	(2)	P	1 $\wedge E$
1	(3)	Q	1 $\wedge E$
	(4)	$P \rightarrow Q$	2,3 CP

Disjunction elimination

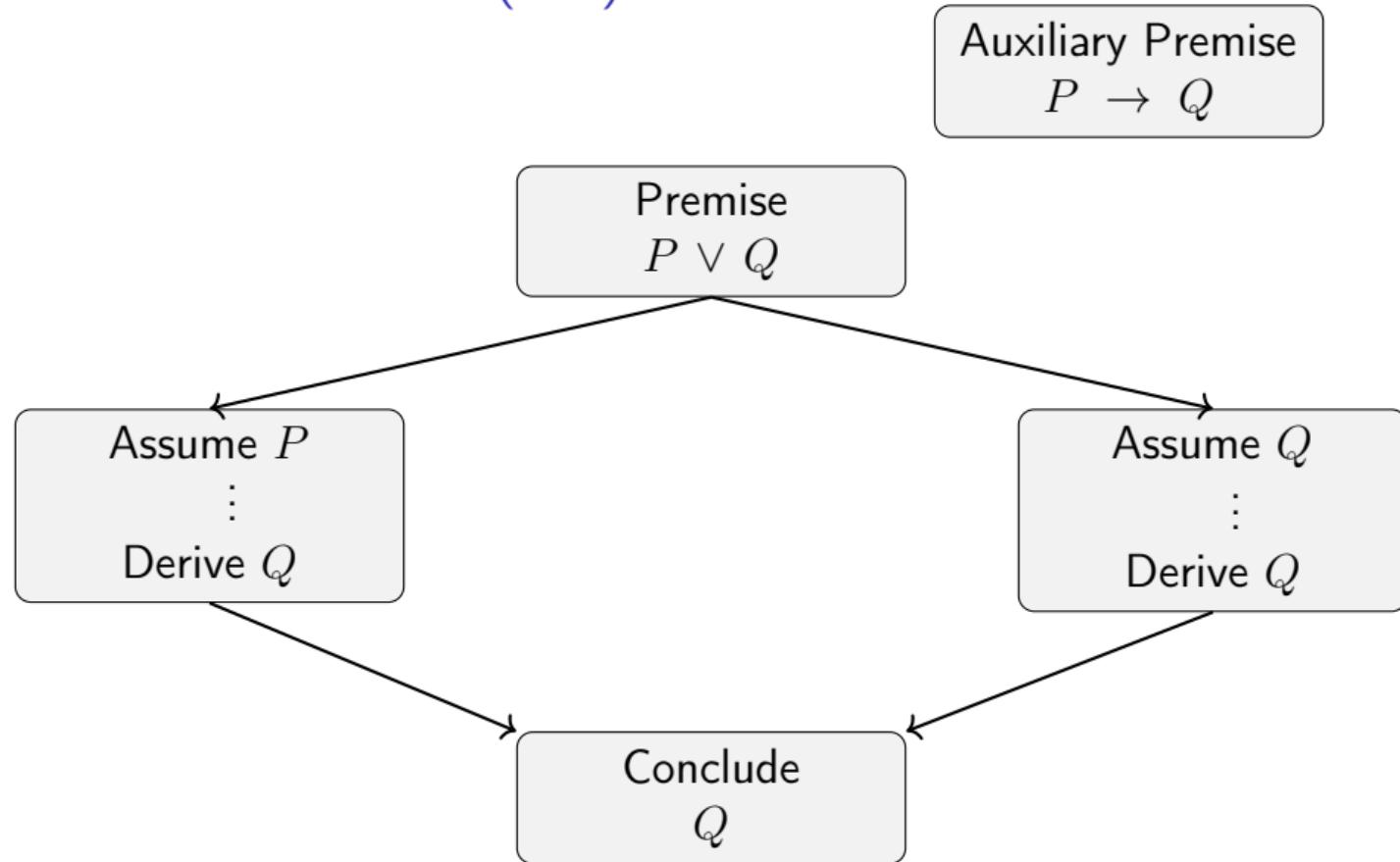
Disjunction Elimination ($\vee E$)



Disjunction elimination

Deps	Line	Formula	Justification
1	(1)	$(P \wedge Q) \vee (P \wedge R)$	A
2	(2)	$P \wedge Q$	A
2	(3)	P	2 $\wedge E$
4	(4)	$P \wedge R$	A
4	(5)	P	4 $\wedge E$
1	(6)	P	1,2,3,4,5 $\vee E$

Disjunction Elimination ($\vee E$)



Disjunction elimination

Deps	Line	Formula	Justification
1	(1)	$P \rightarrow Q$	A
2	(2)	$P \vee Q$	A
3	(3)	P	A
1,3	(4)	Q	1,3 MP
5	(5)	Q	A
1,2	(6)	Q	2,3,4,5,5 $\vee E$

Disjunction elimination

Deps	Line	Formula	Justification
1	(1)	$P \vee P$	A
2	(2)	P	A
1	(3)	P	1,2,2,2,2 $\vee E$

Subtleties of conditional proof

Positive paradox

Deps	Line	Formula	Justification
1	(1)	Q	A
2	(2)	P	A
1	(3)	$P \rightarrow Q$	2,1 CP

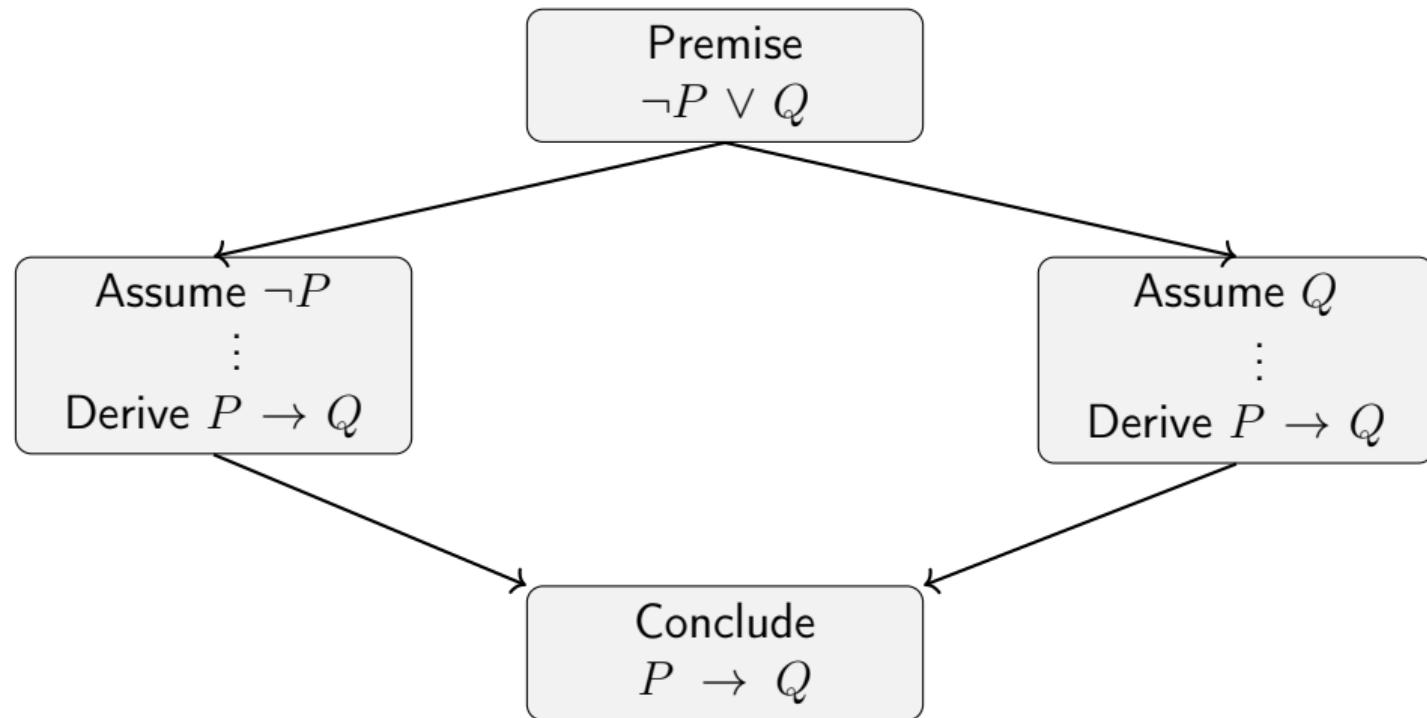
Negative paradox

Deps	Line	Formula	Justification
1	(1)	$\neg P$	A
2	(2)	P	A
3	(3)	$\neg Q$	A
2	(4)	$\neg Q \rightarrow P$	3,2 CP
1,2	(5)	$\neg\neg Q$	4,1 MT
1,2	(6)	Q	5 DN
1	(7)	$P \rightarrow Q$	2,6 CP

Ex Falso Quodlibet

Deps	Line	Formula	Justification
1	(1)	P	A
2	(2)	$\neg P$	A
3	(3)	$\neg Q$	Assumption
2	(4)	$\neg Q \rightarrow \neg P$	3,2 CP
1	(5)	$\neg\neg P$	1 DN
1,2	(6)	$\neg\neg Q$	4,5 MT
1,2	(7)	Q	6 DN

Material conditional



Summary

- From now on, proofs consist of **four** columns.
- For the deducing rules, we collect dependency numbers from the cited lines.
- **Conditional proof** allows us to derive a conditional statement from a “subproof” in which we make a new assumption.
- **Disjunction elimination** allows us to draw a conclusion from a disjunction if we can draw it from each disjunct separately.