

Short Answer

1. To apply EE, we need three lines:

$$\begin{array}{ll}
 D(i) & (i) (\exists x) Fx \\
 j & (j) Fa \\
 D(k) & (k) C
 \end{array}
 \quad \text{A}$$

that satisfy the condition that “*a*” occurs neither in *C* nor in the set $\underline{D}(i)$ of dependencies. In this case, EE entitles us to write a line

$$D(m) \quad (m) C \quad i, j, k \text{ EE}$$

where $D(m) = D(i) \cup [D(k) - D(j)]$.

2. True. If A_1, \dots, A_n are inconsistent, then $A_1, \dots, A_n \models P \& \neg P$ (since no valuation satisfies A_1, \dots, A_n). By the completeness of the predicate calculus, $A_1, \dots, A_n \vdash P \& \neg P$.

3. ... there is no interpretation that makes both *A* and *B* true.

4. In line 6, the dependency numbers are tabulated incorrectly. The dependencies on line 6 should be:

$$\underline{D}(1) \cup [\underline{D}(2) - \underline{D}(2)] \cup [\underline{D}(5) - \underline{D}(3)],$$

which is 1, 2.

5. Line 2 is not a contradiction, and so lines 1 and 2 are not candidates for RAA.

6. Problem 4: Line 6. Problem 5 has no “bad” lines, despite the fact that line 3 is not warranted by the basic inference rules.

Translation

1. Every man who has a son adores him.

$$(x)(y)[(Mx \& My \& Pxy) \rightarrow Axy]$$

2. Every man who has a daughter adores his daughter’s mother.

$$(x)(y)(z)[(Mx \& \neg My \& Pxy \& \neg Mz \& Pzy) \rightarrow Axz]$$

3. Everybody adores their own grandchildren.

$$(x)(y)(z)[(Pxy \& Pyz) \rightarrow Axz]$$

4. Every woman adores her brothers’ children.

$$(x)(y)(u)[(\neg Mx \& My \& (\exists z)(Mz \& Pzx \& Pzy) \&$$

$$(\exists w)(\neg Mw \& Pwx \& Pwy)) \rightarrow (Pyu \rightarrow Axu)]$$

5. No man adores children unless he has his own.

$$(x)[(Mx \& \neg (\exists z)Pxz) \rightarrow (y)((\exists t)Pty \rightarrow \neg Axy)]$$

6. Someone has at most three children.

$$(\exists x)(y)(z)(t)(w)[(Pxy \& Pxz \& Pxt \& Pxw) \rightarrow (Iyz \vee Iyw \vee Iyt \vee Izw \vee Izt \vee Iwt)]$$

Proofs and Counterexamples

1. Prove the following tautology using only basic rules of inference:

$$\vdash \neg(P \rightarrow Q) \leftrightarrow (P \& \neg Q)$$

1	(1) $P \& \neg Q$	A
2	(2) $P \rightarrow Q$	A
1	(3) P	1 &E
1,2	(4) Q	2,3 MPP
1	(5) $\neg Q$	1 &E
1,2	(6) $Q \& \neg Q$	4,5 &I
1	(7) $\neg(P \rightarrow Q)$	2,6 RAA
	(8) $(P \& \neg Q) \rightarrow \neg(P \rightarrow Q)$	1,8 CP
9	(9) $\neg(P \rightarrow Q)$	A
10	(10) $\neg(P \& \neg Q)$	A
11	(11) P	A
12	(12) $\neg Q$	A
11,12	(13) $P \& \neg Q$	11,12 &I
10,11,12	(14) $(P \& \neg Q) \& \neg(P \& \neg Q)$	10,13 &I
10,11	(15) $\neg \neg Q$	12,14 RAA
10,11	(16) Q	15 DN
10	(17) $P \rightarrow Q$	11,16 CP
9,10	(18) $\neg(P \rightarrow Q) \& (P \rightarrow Q)$	9,17 &I
9	(19) $\neg \neg(P \& \neg Q)$	10,18 RAA
9	(20) $(P \& \neg Q)$	19 DN
	(21) $\neg(P \rightarrow Q) \rightarrow (P \& \neg Q)$	9,20 CP
	(22) $(\neg(P \rightarrow Q) \rightarrow (P \& \neg Q)) \& ((P \& \neg Q) \rightarrow \neg(P \rightarrow Q))$	8,21 &I
	(23) $\neg(P \rightarrow Q) \leftrightarrow (P \& \neg Q)$	22 Dfn \leftrightarrow

2. Prove the validity of the following argument using only basic rules of inference.

$$(\exists x)(Fx \& (y)(Gy \rightarrow Rxy)), (x)(Fx \rightarrow (y)(Hy \rightarrow \neg Rxy)) \vdash (x)(Gx \rightarrow \neg Hx)$$

1	(1) $(\exists x)(Fx \ \& \ (y)(Gy \rightarrow Rxy))$	A
2	(2) $(x)(Fx \rightarrow (y)(Hy \rightarrow -Rxy))$	A
3	(3) $Fa \ \& \ (y)(Gy \rightarrow Ray)$	A
3	(4) Fa	3 \&E
2	(5) $Fa \rightarrow (y)(Hy \rightarrow -Ray)$	2 UE
2,3	(6) $(y)(Hy \rightarrow -Ray)$	4,5 MPP
3	(7) $(y)(Gy \rightarrow Ray)$	3 \&E
2,3	(8) $Hb \rightarrow -Rab$	6 UE
3	(9) $Gb \rightarrow Rab$	7 UE
10	(10) Gb	A
3,10	(11) Rab	9,10 MPP
3,10	(12) $-- Rab$	11 DN
2,3,10	(13) $-Hb$	8,12 MTT
2,3	(14) $Gb \rightarrow -Hb$	10,13 CP
2,3	(15) $(x)(Gx \rightarrow -Hx)$	14 UI
1,2	(16) $(x)(Gx \rightarrow -Hx)$	1,3,15 EE