
Practice Final Exam

Short answer

1. State the Existential Elimination (EE) rule, along with each of its
restrictions.

EE allows us to deduce Γ,∆ ` C from Γ ` ∃xφ(x) and ∆, φ(c) ` C,
provided that c does not occur in:

1. the existential claim ∃xφ(x) which we seek to ‘eliminate’
using EE;
2. the premises ∆ on which the proof of the conclusion is
based; and
3. the conclusion C.

2. Complete the following sentence: propositional logic sentences φ and
ψ are mutually consistent just in case . . .

. . . there is a valuation v such that v(φ) = 1 and v(ψ) = 1.

3. True or False (explain your answer): Suppose that φ and ψ are mutu-
ally consistent propositional logic sentences. Could there be a correctly
written proof that begins with φ ∧ ψ and that ends with ⊥?

No. The Soundness Theorem shows that if φ ∧ ψ ` ⊥, then for any
valuation v such that v(φ ∧ ψ) = 1 we would also have v(⊥) = 1.
Since φ and ψ are mutually consistent, there is a valuation v such that
v(φ ∧ ψ) = 1. But v(⊥) = 0 for any valuation. Therefore, there is no
proof of ⊥ from φ ∧ ψ.

4. Grade the following proof.

1 (1) p ∨ q A
2 (2) p A
3 (3) q A
2,3 (4) p ∧ q 2,3 ∧I
2,3 (5) p 4 ∧E
1 (6) p 1,2,2,3,5 ∨E

Lines 1 through 5 of this proof are perfectly correct. But we know that
p ∨ q does not imply p, so there must be something wrong with line

1



6. Indeed, the dependency tabulation on line 6 is faulty. To compute
the dependencies for ∨E, we need to combine the following three sets
of dependencies:

1. The dependencies of the disjunction (i.e. of line 1).
2. The dependencies of the first derivation (i.e. of line 2),
except for the first assumption (i.e. 2).
3. The dependencies of the second derivation (i.e. of line 5),
except for the second assumption (i.e. 3).

But the third set of dependencies includes 2. Thus, line 6 should
include dependency on 2.

5. Grade the following proof.

1 (1) ¬p A
2 (2) ∃x(Fx ∧ ¬Fx) A
2 (3) ¬¬p 1,2 RAA
2 (4) p 3 DN

(5) ∃x(Fx ∧ ¬Fx)→ p 2,4 CP

Line 3 is incorrect. The rule RAA requires a contradiction, i.e. a
sentence of the form φ∧¬φ. But line 2 is not a contradiction, it is an
existential sentence.

6. A “bad line” in a proof is a line where the sentence on the right is not
a logical consequence of its dependencies. Identify all the bad lines in
the previous two proofs.

In the first proof, line 6 is bad. In the second proof, none of the lines is
“bad” in this sense. For although the rule RAA doesn’t allow line 3 as
it’s written, there is nonetheless a proof of ¬¬p from ∃x(Fx ∧ ¬Fx).
In fact, the proof might run as follows: given ∃x(Fx ∧ ¬Fx), assume
Fa ∧ ¬Fa. Use RAA to derive ¬¬p, and then use EE to show that
¬¬p follows from ∃x(Fx ∧ ¬Fx).

Translation

Translate the following sentences into predicate logic notation. You may use
the equals sign = as well as the following relation symbols:

Mx ≡ x is male Pxy ≡ x is a parent of y Axy ≡ x adores y
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(The domain of quantification is persons — you do not need a predicate
symbol for “is a person.” For the purposes of this problem, a “child” is
anyone who has a parent.)

1. Every man who has a son adores him.

∀x(Mx→ ∀y((My ∧ Pxy)→ Axy))

2. Every man who has a daughter adores his daughter’s mother.

∀x(Mx→ ∀y((¬My ∧ Pxy)→ ∃z(¬Mz ∧ Pzy ∧Axz)))

Some people might think that the phrase, “his daughter’s mother”
requires a statement not only of existence, but also of uniqueness. Of
course, that could be captured by adding a clause to the effect that
for any other z′, if z′ is a mother of y then z′ = z.

Some people might also think that this sentence doesn’t really imply
that his daughter has a mother — but only that if she has a mother,
then he adores her. To capture that sense, we would use

∀z((¬Mz ∧ Pzy)→ Axz)

3. Everybody adores their own grandchildren.

∀x(∀y(∃z(Pxz ∧ Pzy))→ Axy)

4. Every woman adores her brothers’ children.

∀x(¬Mx→ ∀y∀z(((My ∧ ∃w(Pwx ∧ Pwy)) ∧ Pyz)→ Axz))

Here we symbolize “y is a brother of x,” by

My ∧ ∃w(Pwx ∧ Pwy)

which some people would say only means that y is a half-brother of x.

5. No man adores children unless he has his own.

∀x(Mx→ (∃y∃z(Pzy ∧Axy)→ ∃wPxw))

6. Someone has no more than two children.

∃w∀x∀y∀z((Pwx ∧ Pwy ∧ Pwz)→ (x = y ∨ x = z ∨ y = z))

Proofs

Prove the following sequents.
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1. ¬(p→ q) ` (p ∧ ¬q)

We won’t write out the full proof here, because this is an easy one.
The idea of the proof is as follows: from negative paradox, we have
¬p ` p → q. Hence ¬(p → q) ` p. From positive paradox, we have
q ` p→ q. Hence ¬(p→ q) ` ¬q.

2. ∃x(Fx ∧ ∀y(Gy → Rxy)),∀x(Fx → ∀y(Hy → ¬Rxy)) ` ∀x(Gx →
¬Hx)

Again, we will sketch the idea of the proof. Since the conclusion is a
universally quantifier conditional, we assume Ga with the goal of prov-
ing ¬Ha. Now take a typical disjunct of the first existential sentence,
e.g.

Fb ∧ ∀y(Gy → Rby),

which yields Fb and ∀y(Gy → Rby). Then use UI on the universal
statement to get

Fb→ ∀y(Hy → ¬Rby).

My MPP we have ∀y(Hy → ¬Rby). Now instantiate the two universal
sentences to get Ga → Rba and Ha → ¬Rba. Using Ga, which we
assumed above, we get Rba, hence ¬¬Rba, hence ¬Ha. To complete
the proof, we then use CP to get Ga→ ¬Ha, and UI to get ∀x(Gx→
¬Hx).

Metatheory

1. Use proof by induction to show that the connective ∨ is not by itself
truth-functionally complete (i.e. there is a truth-function that cannot
be expressed using only ∨).

We will show that for any formula φ built out of a single atomic sen-
tence p and ∨, and for any valuation v, if v(p) = 1 then v(φ) = 1. We
prove it by induction. Base case: if φ = p, then the result is obviously
true. Now suppose that the result is true for φ and ψ. That is, for
any valuation v, if v(p) = 1 then v(φ) = 1 and v(ψ) = 1. But then for
any valuation v, if v(p) = 1 then v(φ ∨ ψ) = max{v(φ), v(ψ)} = 1.

2. State precisely what it means to say that the propositional logic infer-
ence rules are sound. i.e. state the soundness theorem for the proposi-
tional calculus. Prove the soundness of Reductio ad Absurdum (RAA).
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To say that the propositional logic rules are sound means that if there is
a derivation of ψ from φ1, . . . , φn, then for any valuation v, if v(φi) = 1
for i = 1, . . . , n, then v(ψ) = 1. Or in more pedestrian terms, on any
row of the truth table for φ1, . . . , φn and ψ, if φ1, . . . , φn are all true,
then ψ is also true.

3. True or False (explain your answer): if φ is a propositional logic tau-
tology, and φ′ is a substitution instance of φ, then φ′ is a tautology.

True. By saying that φ′ is a substitution instance of φ, we mean that
they are sentences in the same language Σ, and that φ′ results by
replacing one or more atomic sentences in φ with sentences of Σ. Now
let v be an arbitrary valuation of Σ, and consider the new valuation
v′ given by

v′(p) = v(p′),

where p′ is whatever sentence replaces p in φ′. Then it’s straightfor-
ward to verify that v′(φ) = v(φ′), and since φ is a tautology, it follows
that v(φ′) = 1. Since v is an arbitrary valuation, it follows that φ′ is
a tautology.

4. Give a substitution instance of the following sentence that is a tautol-
ogy:

(p ∧ q) ∨ (¬p ∧ ¬q)
Explain precisely which substitutions you have performed.

Let F (p) = > and F (q) = >. Then F (p ∧ q) = > ∧ >, and F applied
to the original sentence is a tautology.
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